CONCEPT RECAPITULATION TEST - IV Paper 2 [ANSWERS, HINTS & SOLUTIONS]

Question Paper 6 Pages
HHP

Contributed by

Heena Hari Pandey
Loading
  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    1
    ANSWERS, HINTS & SOLUTIONS
    CRT –IV
    (Paper-2)
    Q.
    No.
    PHYSICS CHEMISTRY MATHEMATICS
    1.
    C A, B, C D
    2.
    C A, C C
    3.
    D C A
    4.
    B A, B, D B
    5.
    B B, C, D A, C
    6.
    C A, C A, C, D
    7.
    C A, B A, B, D
    8.
    C A, B, C B, D
    9.
    C B B
    10.
    A D C
    11.
    B B B
    12.
    B B D
    13.
    C B A
    14.
    B D B
    15.
    A A D
    16.
    C B C
    17.
    C C B
    18.
    D A C
    19.
    C D D
    20.
    B C C
    ALL INDIA TEST SERIES
    FIITJEE
    JEE(Advanced)-2014
    From Classroom/Integrated School Programs
    7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students
    from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013

    Page 1

  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    2
    P
    P
    h
    h
    y
    y
    s
    s
    i
    i
    c
    c
    s
    s PART – I
    2. T sin = mg/2
    T = T cos
    =
    mg mg
    cot
    T sin
    T cos
    T
    T
    3.
    2
    1
    mv pt
    2
    (P = const)
    v =
    2Pt
    m
    a =
    dv 2P 1
    dt m
    2 t
    F = ma =
    mP 1
    2t v
    5.
    1 2 3 4 5
    F F F F F F
    2 5 2 4
    F F and F F
    1 3 2 1
    F F 2F cos30 2F cos60
    F
    3
    =
    2
    2
    Gm
    4a
    ; F
    2
    =
    2
    2
    Gm
    3a
    ; F
    1
    =
    2
    2
    Gm
    a
    m
    m
    m
    m
    m
    m
    F
    1
    F
    2
    F
    3
    F
    4
    F
    5
    F =
    2
    2
    Gm 5 1
    4
    a
    3
    = m
    2
    a
    =
    3
    Gm 5 1
    a 4
    3
    T = 2
    3
    4 3a
    Gm 5 3 4
    6.
    d
    g L x gL xu
    dt
    7.
    x
    p
    v 5
    ,
    y
    p
    v 5
    5 2
    = 7.1 m/s approx.
    8.
    6
    P
    4
    1600 10
    v
    4 10
    = 4 m/s
    6
    Q
    4
    1600 10
    v
    2 10
    = 8 m/s
    2 2
    A B A Q P
    1
    P P v v gh
    2

    Page 2

  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    3
    11-12. Let the point of suspension is origin(O), then C.M. lies on
    vertical line when it is in equilibrium position.
    x
    cm
    =
    m(0) m(L/ 2) m(L)
    3m
    = L/2 and
    y
    cm
    =
    m( L/ 2) m( L) m( L/ 2) 2L
    3m 3
    tan =
    L/ 2
    2L/ 3
    = ¾ = tan
    -1
    (3/4) or 37
    0
    d
    2
    =
    2 2
    2L L
    3 2
    d =
    5L
    6
    /2
    m
    5
    /6
    2
    /3
    /2
    y
    x
    O
    Moment of inertia I = Mk
    2
    =
    2 2 2 2
    m
    4m
    12 4 2 3
    = 3m
    2
    (Assume full square and calculate moment of inertia about origin and subtract the moment of
    inertia of fourth rod.)
    Time period of a physical pendulum = 2
    I
    mgd
    = 2
    6
    5g
    sec
    13-14. F = qvB sin = qvB ( = 90)
    So, B =
    F
    qv
    =
    20
    19 3
    3.2 10
    1.6 10 4 10
    = 5 10
    -7
    T
    Now,
    p q
    7
    0
    I I
    5 10
    2 5 2
    I = 4 amp.
    If the distance of point R from third current carrying current is X, then
    B
    R
    = 0
    7
    0
    2 2.5
    5 10 0
    4
    so x = 1 m
    16. P(2r)dr = 2r
    dv
    dr
    2(r+dr)
    dv
    dr
    P(2r)dr = 2
    dv
    dr
    dr
    P(2r) = 2
    0
    2
    2v r
    R
    P =
    0
    2
    2 v
    R

    Page 3

  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    4
    C
    C
    h
    h
    e
    e
    m
    m
    i
    i
    s
    s
    t
    t
    r
    r
    y
    y PART – II
    SECTION – A
    8. (D) is incorrect, since Gabriel method is used to prepare 1
    o
    aliphatic amines.
    10. Bottles 1, 2, 3, 4 have Pb(NO
    3
    )
    2
    , HCl, Na
    2
    CO
    3
    and CuSO
    4
    .
    When mixing:
    Bottle 1 + Bottle 2 PbCl
    2
    Bottle 1 + Bottle 3 PbCO
    3
    Bottle 1 + Bottle 4 PbSO
    4
    Bottle 2 + Bottle 3 CO
    2
    Bottle 2 + Bottle 4 No visible reaction
    Bottle 3 + Bottle 4 CuCO
    3
    12.
    2 2
    N O
    2 3
    Li Li O Li N
    
    2
    H O
    LiOH
    2
    Li N
    
    2
    H O
    3
    LiOH NH
    
    Solution for the Q. No. 15 & 16
    OH
    NO
    2
    A
    2 5
    C H I
    
    OC
    2
    H
    5
    NO
    2
    B
    Sn HCl
    
    OC
    2
    H
    5
    NH
    2
    C
    2
    Ac OH AcOH
    
    OC
    2
    H
    5
    NH C
    O
    Me
    D
    A 
    OSO
    2
    Ph
    NO
    2
    NaF/DMSO
    
    F
    NO
    2
    E
    F
    20. (P – 2) oxalic acid dehydrate, loses H
    2
    O when treated at 105
    o
    C.
    (Q – 3) when heated at 200
    o
    C or when refluxed with H
    2
    SO
    4
    at 90
    o
    C, it decomposes into CO
    2
    , CO,
    HCOOH and H
    2
    O.
    (R – 4) malonic acid on heating with P
    2
    O
    5
    loses H
    2
    O and forms carbon suboxide.
    (S – 1) oxalic acid is oxidised by KMnO
    4
    to CO
    2
    .

    Page 4

  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    5
    M
    M
    a
    a
    t
    t
    h
    h
    e
    e
    m
    m
    a
    a
    t
    t
    i
    i
    c
    c
    s
    s PART – III
    HINTS AND SOLUTION
    1. Put x
    2
    = t
    2 2 2
    t t t 2 t
    1
    I e te e 2t e dt
    2
    2. We have
    a b
    k
    2 3
    and
    2
    8
    sec A
    5
    2
    5
    cos A
    8
    2 2 2
    5
    c 10k , k
    2
    4.
    1 1
    1 2 3
    1 2
    tan tan
    a 1 b
    tan 1
    1 b a
    1 tan tan
    7.
    x if x [1, 2)
    f x
    x if x (2, )
    8. Clearly, A = (–2 cos 60º, 2 sin 60º)
    B = (2 cos 60º, –2 sin 60º)
    Tangent at A is x(–2 cos 60º) + y(2 sin 60º) = 4
    and tangent at B is x(2 cos 60º) + y(–2 sin 60º) = 4
    30º
    2
    B
    60º
    2
    A
    P 3, 1
    2
    x
    x
    9. Since, parabola is above x–axis
    D = a
    2
    – 4 0
    Thus, a
    max
    = 2
    10. Equation of tangent at (0, 1) to the parabola is y – 1 = a(x – 0)
    11.-12.
    az bz c 0
    ..... (1)
    az bz c 0
    ..... (2)
    Eliminating
    z
    from (1) and (2)
    2 2
    b a z ca bc
    Adding (1) and (2)
    a b z a b z c c 0
    This is of form
    Az Az B 0
    13.-14 Here,
    2x 2x
    A
    2x 2x
    e 1 e 1
    1
    e
    2
    e 1 e 1
    So, f(x) = e
    2x
    + 1; g(x) = e
    2x
    – 1

    Page 5

  • AITS-CRT-IV-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    6
    15.-16.
    / 2
    0
    f x sinx cost f t dt sinx
    f(x) – P sin x = sin x
    or f(x) = (P + 1) sin x
    Where
    / 2
    0
    P cost f t dt
    =
    / 2
    0
    cost P 1 sint dt
    =
    / 2
    0
    P 1
    sin2t dt
    2
    P 1
    P
    2
    P
    2
    f x 1 sinx 2
    2
    sin x = 2 –
    [1, 3]
    / 2
    0
    2
    sinx dx 3
    2
    4
    3
    20. (P) 2(F(x) f(x)) = f
    2
    (x)
    f(x) – f(x) = f(x) f(x)
    f x 1
    f ' x 1
    1 f x 1 f x
    f(x) is an increasing function
    (Q) 21 f(5) – f(–2) 28
    (R)
    2
    x 2
    y
    2x 3x 6
    1 1
    y ,
    13 3
    (S) y = e
    –x
    cos x
    y
    1
    = –e
    –x
    sin x – e
    –x
    cos x = –e
    –x
    sin x – y
    y
    2
    = –e
    –x
    cos x + e
    –x
    sin x – y
    1
    y
    4
    + 4y = 0
    k = 2

    Page 6

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.