CONCEPT RECAPITULATION TEST - I [ANSWERS, HINTS & SOLUTIONS]
other
13 Pages
AB
Contributed by
Anees Batta
Loading
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com1ANSWERS, HINTS & SOLUTIONSCRT – I(Main)Q. No. PHYSICS CHEMISTRY MATHEMATICS1. C D A2. B B C3. C C C4. D C B5. D C A6. A A B7. C B C8. D D D9. B B A10. C A B11. C C C12. B B B13. D B B14. D A C15. A B B16. C B C17. B B A18. B D B19. B B C20. B B B21. C C C22. A C B23. D D A24. B B A25. B C B26. C C C27. D D C28. B B C29. C C B30. B A CALL INDIA TEST SERIESFIITJEEJEE(Main)-2014From Classroom/Integrated School Programs7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Studentsfrom Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
Page 1
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com2PPhhyyssiiccss PART – I1.63 14 10 51 15.7 ohm metre.2 r L Rr L R ohm metre.01 0115 7 21 1 501 ohm metre15.7 02 01 002 ohm – metre15.7 032 m5024 m2.P100 3 0 1 2 0 2 3 0 3 4 0 1P 3 4 9 4 2% 3.0t0A N e t03Ae 3 N e 0t t11e ee 01t t .4. Ato1 0v sinˆt ,v v cos ig 2 0ˆ ˆv v k gtj 2 1 0 0ˆ ˆ ˆv v v k gt j v cos i 5. 22f a Z b . (D)6.k mg xdvvdx m 00x0v ok mgvdv xdxm 0 0mx vk mg 7. 21 2max2min1 2I IIII I
Page 2
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com3212I1I1 if I1> I28.c100I sin 50t45 2 L100I sin 50t45 2 I = 20sin(50t)5 2/45 2/4/410 2/4I=Ic+IL9. 2mg sin30 – T = 2m(a)T = mamga g / 3 & T3 Net force =Result of these forces0ˆ ˆ ˆT j Tcos60 j Tsin60 i 3 3ˆ ˆTi Tj2 2 mgˆ ˆ3i 3j6 As net force in pulley = 0,force by clamp mgˆ ˆ3i 3j6 T030T60010. The circuit can be simplified as:00 ,peak current =20 Ampere.5.1H.004F100 sin [50t] volts..004F515c L 5 12. When u decreases v increases. For plane mirror u decreases.the image in plane mirror moves towards the left.13.0 00I1 14 . sin45 sin454 R 2R 0 0I I122R2 R 14.110V 44 4 volts = 5 volt2100 410100 4V100 44100 4= 4.9 volts1 2V V 0.1 volt
Page 3
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com415. In both casesapplying com,0mv Mv0mvVM 12V1:1V 16. In steady state :-P QE EV V R2R 2 Q SE EV V R2R 2 S RV VP RV V E AQ CE BCEQ217.P 0V V 10 10 10 10 = - 200 volts.18. For the two blocks to move together minF FM m g 2Mg Asmin, the two blocks move together.Velocity of the system (M+m) isFv at t2M 2F FP Fv F t t.2m 2M 19.2PAxt mcT4 r 24 r mcTtPA20.A b 2 T .21. After collision,the rod starts rotating about its centre of mass.Now the torque of mg about the centre of mass = 0, hence is constant.
Page 4
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com522.0xelongation in equilibrium0macos mgsin kx (1)For x = elongation from equilibriumnet force0mgsin macos k x x kx (i)kxaccm mT 2k NθK(x0+ x)maMg sinMg cos23. 30 T4r n n g 6 rV .3 20T2r n nV g9203g2r n n g4P r .n.g.3 9 5208 r nn n g27 55.x 2cm 0.02m 24. k x 100 .02 = 2rad25.0 02T 2TP gh Pr 2r T ghr. 26.MGGM 2GM45R2R 5R2 27. The apparent frequency initially decreases & then increases in one time period.28.e eGM m GM mE12R 4R eGM m6R29. 2 2 2 2v u 2gh 0 40 2 10 h h 80m where h is maximum height reached by ball Av = u – gt t = 4 sec,A B80t' 2secu u Au' gt' 20m / s Bu' 40 2 10 20m / s UA=040m/sec= uBh =80 mA(t=4sec)BuAuB(T=t+t)Thus the speed of each ball gets interchanged (for equal mass & elastic collision)
Page 5
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com630.21 2 1T T m r 22 1 2T m r r 21 1 2T m 2r r Thus1 2T TmT1T2T2CChheemmiissttrryy PART – II1. MwtC6H5Cl = 112.5MwtC6H5CH3= 92Given:6 5C H Clx 0.5So mass% composition reaction of C6H5Cl is% C6H5Cl =112.5100204.5 = 55%2. As density increases, volume of gas decreases so intermolecular forces increase and diffisubilitydecreases.3. For 432n = 4, l = 3, m = 2Angular momentum = h 12h 3h12 2 Angular node == 3So total node =3h3=3h 3 4.o250 C3 4 4 2 7 2Pyrophosphoric acid2H PO H P O H O OH P O P OHOOH OHO5.PBBPPBO+O+O+O+O+O+HHHHHH3 p—p back bonding between B and O and3 p—d back bonding between P and O is possible.7. 2 2 7 2 4 3 4 2Chromic anhydrideRed CrystalK Cr O 2H SO 2CrO 2KHSO H O 9.2NHbehaves as a base and E2elimination takes place.
Page 6
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com710. OH3NaOHCClOHCCl3HOHCHO11. 2 2 3 3 2 2 3 2black pptwhiteNa S O AgNO Ag S O Ag S 12.c8aT27Rb soc1Tb; and b = 4 NA V b r13. AB type structure in which Zn+2is tetrahedrally surrounded by S–ion, S–2is present in half oftetradedral acid.14. It is an extensive property.15. 1 2K t K t11 202 1d BKA K e K edt K K 16. 22 3326Fe H O OH H OkspFe H O , Ksp should be high.17.1 2 2a 1 a CH K C K 2.5 18. G0(net) =0 01 2G G Total e–exchanged = (a + b)0 0G nFE 0 0 03 1 2a b FE aFE bFE 0 001 23aE bEEa b19.2 2 7 2 4 2 3 2K Cr O K CrO Cr O O 20.CH3C6H5OMPPh3CH3C6H53POPh (Wittig reaction)21. Nitrogen is less electronegative than oxygen and on 3rdreactive site it is sp3hybridised.
Page 7
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com822. OCOCH3(1) NaOIOCOOHO2CO23. As metallic character increases down the group so acidic nature of oxide decreases.26.Ni4-ClClCl NH3ClNH3-2Ni4-ClClCl ClNH3NH3-2andCisTrans27.32 3 2 4As O 5H O 2AsO 10H 4e 29.22BeO 2C Be C 2CO 30. Only lithium nitride with formula LiN3in first group and Mg with Mg3N.MMaatthheemmaattiiccss PART – III2. Since the equations are consistent D = 03 3 3(a 1) (a 2) (a 3)(a 1) (a 2) (a 3) 01 1 1 Put u = (a + 1), v = a + 2, w = a + 3u v = 1, v wz 1, w u = 2u + v + w = 3a + 63 3 3u v wu v w 01 1 1(u v) (v w) (w u) (u + v + w) = 0(1) (1) (2) (3a + 6) = 0i.e. a = 2.3. 1234 = 3n + 1, so 1234567= 3m + 1,89 = 3k – 1, so 891011= 3p – 1.Hence 1234567+ 891011= 3n 1234 is even,So 1234567= 4q. 89 = 4r + 1, so 891011= 4t + 1.Hence 1234567+ 891011= 4l + 1. So it is 9x + 1.
Page 8
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com94. Here, tan A + tan B =2caband tan A . tan B = 1tan A . tan B = 1 tan A = cot B A = 900– B A + B = 900 C = 900 sin A =ac, sin B =bc sin2A + sin2B + sin2C =2 22 2a b1 2c c 5. I1= 1012 2 4x100dx5 2x 2x 1 e = 10122 4 1 x100dx5 2 1 x 2 1 x 1 e 2I1=1012100dx5 2x 2x = I212II=12.6. Since f(x) and g(x) are one-one and onto and are also the mirror images of each other withrespect to the line y = 2. It clearly indicates that h(x) = f(x) + g(x) will be a constant function andwill always be equal to 4.7. Equation of the curve passing through the points A, B, C, D is(3x + 4y – 24)(4x + 3y – 24) – xy = 0If it represents a parabola then the quadratic terms must form a perfect square. = 1 or 49.8. Locus is a hyperbola with eccentricity =1 21 2r r2r r9. In an equilateral triangle r =2RAlso exradius r1= 4R sin2Acos2Bcos2C= 4R R2323.23.21 r, R, r1are in A.P.10. 2x / 222 2x0tlim dtx 1 t=form 2x /22202xtdt1 tlimx=44xxx4 xlim2x=55xxlim2x 8=12.11. (3m + 1)(3n – 1) = 3n2– 1, so if p divides 3n – 1, then it also divides 3n2– 1and hence also (3n2– 1) – n(3n – 1) = n – 1, and hence also (3n – 1) – 3(n – 1) = 2.So 3n – 1 = 0, ± 1 or ± 2.But n must be an integer, so 0, 1, – 2 do not work. – 1 gives n = 0 and hence m = 0, which is asolution. 2 gives n = 1 and hence m = 0, which is a solution.
Page 9
- AITS-CRT-I PCM(S)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com1012. Two lines can meet in a point6C2= 15line and circle meet in two points = (6C14C1) 2 = 48.Two circles meet in 2 points =4C2 2 = 12total number of points = 48 + 15 + 12 = 75.13. 1 + cos3x+ 1 –7cos 2x2 6 = 023x 22cos 1 cos 2x 02 3 2 23x2cos 2sin x 02 3 3xcos 02,sin x 03 x =3, and x =3,2 7,3 3 , ….. x =3is the common value which satisfies both x = 2n +3= (6n + 1)315.24 2 1(x 1)dx1(x x 1)cot xx =22 1211xdx1 1x 2 1 cot xxx =2 1dt(t 1)cot tPut x 1tx211 dx dtx =duuLet cot1t = u21dt du(1 t ) = ln|u| + c= ln11cot x cx 16.70 70 7023 7 2 323 9 27
Page 10
Download this file to view remaining 3 pages
Related documents:
- Sociological Theories - Questions with answers - Question Bank
- EXIM TRADE - INTERNATIONAL BUSINESS - Notes
- History of Japan - MCQ
- HISTORY I 2015 question paper - Question Paper
- Financial Markets and Banking Operations MCQs - MCQ
- Data Mining MCQs - MCQ
- Human Resource Management Principles and Functions MCQs - MCQ
- HISTORY II 2015 question paper - Question Paper
- Development Of Educational Thought - Question Bank
- PRINCIPLES OF BANK LENDING - Banking regulation and operations (BRO) - Notes
- Engineering Graphics Jan 2018 Question Paper - Question Paper
- QP-IFSM-23-ZOOLOGY-PAPER-I - Question Paper
- Political Science and International Relations Paper I 2021 Question Paper - Question Paper
- Optics Notes and MCQs - Notes
- Modern India - II - MCQ
- Operating System MCQs - MCQ
- INTERNATIONAL FINANCIAL REPORTING STANDARDS - INTERNATIONAL FINANCIAL REPORTING STANDARDS - Notes
- Chhayavaad Part -1 - Question Bank
- Analysis of Financial Statements MCQs with Answers - MCQ
- Mathematics-II - MCQ