Three Dimentional Geometry (Solved MCQs and Notes)
Notes
76 Pages
NN
Contributed by
Nikita Narasimhan
Loading
- 141Unit - 12Three Dimensional GeometryImportant Point• Distance formula in R3: If 1 1 1 2 2 3y z, , b , y , z a x x 2 1 2 1 2 1AB b a , y y , z z x x2 2 22 1 2 1 2 1AB AB ) (y y ) (z z )x x • Division of line segment :Suppose position vector of A & B beb,arespectively ifP(r)dividesABfrom Ain ratio. where P A, P B Co-ordinate of P isbr , 0, -11 a• Co-ordinates of mid point ofABb2a• InABC;If A a , B b ,C cthen posintion vector of centroid isb c,3 ag
Page 1
- 142• Co-ordinates of Incentre : In ABC, if co-ordinate of position vector A, B & C are, b & caand BC = a, CA = b, AB = cThen position vector of incentre isbb ccb caaa • For equilateral triangle centroid and Incentre are equal.• Direction co-sine & direction angle:If vector 3r , b, c Ra makes angle with unit vectors i, j & k then are called direction angles and cos, cos, cos are called direction co-sineofr.2 2 2 2 2 2 2 2 2b ccos , m cos , n cosb c b c b cala a a • If l, m and n are direction co-sine of 2 2 2r , b, c , then m n a l2 2 2cos + cos cos • If unit vector in the direction of r , b, c : a b cˆr , , , m, n| r | | r | | r | al• Direction ratio : if & m for mx x , mx1, mx2, mx3is called directionratio.• Vector equation of line:If direction of line islpasses throughA( ) then equation of line is : r k , k R a a l• Parametric equation of line:1 2 1 2 1 3k , y y k , z z k , k Rx x l l l are the parametric equations of linepassing through 1 1 1 1 2 3, y , z & with direction , , a x l l l l• Cartesian equation of line 1 1 1 1 2 3r , y, z , , y , z & , , x a x l l l l
Page 2
- 143 1 1 1 1 2 3, y, z , , y , z & direction , , x x a x l l l l 1 1 11 2 3y y z zx xl l l • Equation of line passing throughA( ) and B(b)a: 1 1 1 2 2 2, y , z b , y , z & r , y, za x x x Vector equation of linek(b ) k Rr a a Cartesion equation of line1 1 12 1 2 1 2 1y y z zy y z zx xx x • Paramaetric equation of line: 1 2 1 1 2 1 1 2 1k , y y k(y y ), z z k z zx x x x ,k RIf l1= 0 & l2 0, l3 0 then1 1 1 1 112 3 1 3y y z z y y z z, OR0x xx xl l l l • Angle between two lines in space R3:r k , r b km k Ra l If two lines are parallel & direction of lines& m is lsame of opposite.m OR km k R {0} l and lIf two lines are perpendicular then. ml If angle between two lines isthen. mcos 0 <m ll• To obtain angle between two lines it is not necessary that two lines are intersecting(in R3only):In R3condtion for two lines, r b kmr a kl , kR to intersect is( b) . ( m) where , m 0 a l lIn R3, condition for two linesk & r b + kmr a l , k R to interset incartesion form1 1 1 2 2 2 1 2 3y z , b , y , z , , , a x x l l l l
Page 3
- 144 1 2 1 2 1 21 2 3 1 2 31 2 3y y z zm , m , m ism m m x xm l l l• Condition thatlinesk , r b km, k R r a l 0, m are co-planer is l( b) . ( m) a l• Non-coplaner lines :If for any two lines l & m there does not exist plane containing them then they arenon-coplanar.• Condition for two lines to be co-planer or non-coplanerr k & r b + km, k Ra l 1 1 1 2 2 2 1 2 3 1 2 3, y , z , b , y , z , , , , m m , m , ma x x l l l l (1) For Co-planer line : b . m 0a l vector formCartesian form1 2 1 2 1 21 2 31 2 3y y z zm m mx xl l l (2) For non-co-planerline :a b . m 0 Cartesian form1 2 1 2 1 21 2 31 2 3x x y y z z0m m m • Perpendicular distance of a line from point :Perpendicular distance ofr a k l , k R from pointP pis(1) APPPM la lll(2) Cartesian Form 2 2 2 1 1 1 1 2 3, y , z P( , y , z ), , , a x x l l l lPM =1 2 1 2 1 21 2 3j ky y z z lx xl l l• Perpendicular distance between parallel lines:k , r b k l, k R , r a lis =( ) b a ll
Page 4
- 145• Distance between two skew lines(b ) . ( m)k & r b + km, k R, then p| m | a lr a llIn R3relation between two linesL : k , k R , M : r b + km, k Rr a l usingml . we will get relation.Plane :• Vector equation of plane :If plane passes through A( ), B(b), C(c)a then vector equation isr + m (b ) + n(c ), m, n Ra a a • Parametric Form r + mb + nc where + m + n 1al l • Cartesian parametric form 1 1 1 2 2 2 3 3 3r , y, z), , y , z , b , y , z , c , y , zx a x x x x = lx1+ mx2+ nx3where l + m + n = 1, l, m, n Ry = ly1+ my2+ ny3z = lz1+ mz2+ nz3• Cartesian equation : r . (b ) (c )a a a 1 1 12 1 2 1 2 13 1 3 1 3 1y y z zy y z z 0y y z zx xx xx x mm 0 m 0 lines are parallel OR Co- Inside Lines Skew OR Intersecting Linesb a 0 (b a) 0 (b a).( m) 0 (b a).( m) 0 Parallel Lines Co- Inside Lines Skew Lines Intersecting Lines
Page 5
- 146• If A(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3), D(x4, y4, z4) are co-planer then2 1 2 1 2 13 1 3 1 3 14 1 4 1 4 1y y z zy y z z 0y y z zx xx xx x • Equation of plane with intercepts a, b, c with X, Y and Z axis repectively isy z1b cxa (a, b, c 0)• Equation of plane passing through A( )a with normalnis. n . nr acartesian form r , y, z , n , b, c) + by + cz = d (d . n)x a ax a • If angle between two planes is 1 21 2| n . n |t h e n c o s 0| n | | n | • If planes are perpendicular then1 2n . n • The equation of plane passing through two parallel lines :, k R & r b + km, k Rr a kl The equation of plane is . (b ) 0r a a l Cartesian form1 1 12 1 2 1 2 1 1 1 1 2 2 2 1 2 31 2 3y y z zy y z z 0 ( ,y ,z ), b ( ,y ,z ), ( , , ) x xx x a x x l l l ll l l• The equation of plane passing through two intersecting lines+ k and r b + km, (r ) . ( m)= 0r a l a l Cartesian form1 1 11 2 31 2 3y y z z0m m mx xl l l 1 2 3 1 2 3 1 2 3where ( , , ), ( , , ) & m (m ,m ,m )a x x x l l l l
Page 6
- 147• Perpendicular distance from pointP(p)to plane| p . n d |. n d isnr• =1 1 12 2 2| + by + cz d |b caxa (Cartesian form)• Perpendicular distance between two planes1 2r . n d and r . n d is 1 2| d-d || n |• Angle between line+ k , k R, plane r . n d r a l1. nsin 0nll • For two plane1 1 1 2 2 1: r . n d and : r . n d intersection is line then equation of line is1 2+ kn, k R, n n + nr a • For two plane a1x + b1y + c1z + d1= 0 and a2x + b2y + c2z + d2= 0 equation ofplane passing through the intersection of two planes1 1 1 1 2 2 2 2( + b y + c z + d ) + ( + b y + c z + d )a x a x , 0, 1
Page 7
- 148Question Bank1. The point on x-axis equidistance from A(2, -5, 7) and B(1, 3, 6) is ....(a) (-16, 0, 0) (b) (16, 0, 0) (c) (6, 0, 0) (d) none of these2. The equation of the locus of point which are equdistance from (4, 5, 2) and (1, 6,3) is ....(a) 6x - 2y - 2z + 1 = 0(b) 6x + 2y - 2z + 1 = 0(c) 6x + 2y + 2z + 1 = 0 (d) 6x - 2y - 2z - 1 = 03.I f the posi ti on vector of A , B , C in R3are (-1, 2, 0), (1, 2, 3) and (4, 2, 1) then typeof ABC is ...............(a) Right angled (b) Isosceles right angled(c) Euilateral (d) Isosceles4. If the vertices of quadrilatral are (1, 1, 1), (-2, 4, 1), (-1, 5, 5), (2, 2, 5) then itis.....(a) rectangle (b) square (c) parallelogram (d) rhombus5. A(1, 1, 2), B(2, 3, 5), C(1, 3, 4) and D(0, 1, 1) forms ..... and its area is .........(a) Square,2 3(b) Parallelogram,2 3(c) Rectangle,2 3(d) Parallelogram,36. For A(7, -3, 1) and B(4, 9, 8), the point that dividesABfrom B in the ratio 2:5is....(a)34 39 427 7 7, , (b)34 39 427 7 7, ,(c)34 39 427 7 7, , (d)34 39 427 7 7, , 7. For A(1, 5, 6), B(3, 1, 2) and C(4, -1, 0), B dividesACfrom A in ...... ratio(A) -2 : 3 (b) 2 : 3 (c) 2 : 1 (d) -2 : 18. A(0, -1, 4), B(1, 2, 3), C(5, 4, -1), then the foot of perpendicular from A on BCis.......(a) (-3, 3, 1) (b) (3, -3, 1) (c) (3, 3, 1) (d) (3, 3, -1)9. If A(a, 1, 3), B(-1, b, 2), C(1, 0, c) are the vertices of ABC whose centroid is(2, 3, 5), then values of a, b, c are respectively .......(a) 10, 8, 6 (b) 6, 10, 8(c) 8, 6, 10 (d) 6, 8, 10
Page 8
- 14910. If A(6, 4, 6), B(12, 4, 0), C(4, 2, -1) are the vertices of triangle, then it’s incentreis....(a)1022 43 3 3, , (b)1022 43 3 3, ,(c)1022 43 3 3, ,(d)1022 43 3 3, ,11. If the mid points of sides of ABC are P(9, 2, 5), Q(-7, 6, 1), R(8, -9, 3) then thecentroid of ABC is .......(A)10 1 23 3 3, ,(b)10 1 23 3 3, , (c)21, 1,3 (d) None of these12. For ABC, A(-1, -2, -3), B(1, 2, 3), C(1, 2, 1) the length of median through A is.... and centroid is ......(a) 1 2 13 3 33 3, , ,(b) 1 2 13 3 33 5, , ,(c) 1 2 13 3 35, , ,(d)1 2 13 3 33, , ,13. The co-ordinates of the points of trisection ofABis ..... where A(-5, 7, 2), B(1,3, 7)(a)16 11 113 2 31, 4, 3, , (b)16 11 113 2 31, 4, 3, , (c)16 11 113 2 31, 4, 3, , (d) None of these14. Ifm B in ABC and P, Q are points of trisection of hypotenuse AC , thenBP2+ BQ2= ...........(a)59AC2(b)59AC (c)2581AC2(D)2581AC15. If G (0) is centroid of ABC, thenGA + GB + GC (a)0(b) 0 (c)+ y zx(d)+ y z3x16. If A - P - B andAP mPB n, then for every point ‘O’ in space ......(a) (m - n)OP(b) (m + n)OP(c) mOP(d) nOP
Page 9
- 15017. In ABC, if mid points ofABandACare D and E respectively, thenBE + DC (a)32BE(b)23BE(c)32BC (D)23BC18. In parallelogram ABCD, AB2+ BC2+ CD2+ DA2= k(AC2+ BD2), then k = .......(a) 4 (b) 16 (d) 2 (d) 119. If sides of regular hexagon ABCDEF,AB and BC areand barespectively,thenAF (a)b a(b)ba (c)ba (d)a20. For regular hexagon ABCDEF,AB + AC + AD + AE + AF (a)0(b)3 AD(c)2 AD(d)4 AD21. For regular hexagon ABCDEF,AB + BC + CD + AF + EF + ED (a)3 AD(b)2 AD(c)0(d)2 AD22. If the centroid of ABC and PQR is G and G’ respectively thenAP + BQ + CR (a)GG'(b) 3GG'(c) 2GG'(d) 4GG'23. If three vertices of rhombus are (6, 0, 1) (8, -3, 7) (2, -5, 10), then forth vertices= ....(a) (0, -2, -4) (b) (0, -2, 4) (c) (0, 2, 4) (d) (0, 2, -4)24. If vectorrforms an angle with x, y, z-axis then sin2 + sin2 + sin2 =...........(a) 1 (b) 2 (c) -1 (d) -225. If are direction co-sines of x , then cos 2 + cos 2 + cos 2 = ..........(a) 1 (b) 2 (c) -1 (d) -226. If vectorrform anglesand2with x and z axis respectively, then angle withy-axis is........(a)34, (b)4, (c)34, (d)33, 27. Ifis an angle with positive direction of x-axis in R3the no. of such vectorsare...(a) 1 (b) 2 (c) 3 (d) infinite
Page 10
Download this file to view remaining 66 pages
Related documents:
- Electronic Devices Notes and MCQs - Notes
- ELE-SSAC-364 (Model Answer 2021-22)
- History Of The Mughals - MCQ
- FULL TEST – I Paper 2 - Question Paper
- Zoology model question paper 2 - Question Paper
- Drama - II Question bank with Answers - Question Bank
- Political Science and International Relations (Paper II) 2021 Question Paper - Question Paper
- ADE (UNIT-IV) MCQs - MCQ
- Medical Science (Paper II) 2017 Question Paper - Question Paper
- UPSC 2021 Prelims CURRENT AFFAIRS Answer Key with Explanation - Question Bank
- ACCOUNTING FOR JOINT VENTURE - Notes
- Mizo Language And Grammar - MCQ
- Pedagogy - Question Bank
- Java Programming Solved MCQs - MCQ
- Prodcution and operations management MCQs with Answers - MCQ
- TRADING IN STOCK MARKET - STOCK AND COMMODITY MARKET - Notes
- Statistics (Paper IV) 2016 Question Paper - Notes
- Philosophy (Paper II) 2017 Question Paper - Question Paper
- Sanskrit - Prose,Vrutha,Alankara,Theories of Poetics & Grammar MCQs - MCQ
- Animal husbandry and Veterinary science (Paper I) 2017 Question Paper - Question Paper