Three Dimentional Geometry (Solved MCQs and Notes)

Notes 76 Pages
NN

Contributed by

Nikita Narasimhan
Loading
  • 141
    Unit - 12
    Three Dimensional Geometry
    Important Point
    Distance formula in R
    3
    : If
    1 1 1 2 2 3
    y z, , b , y , z a x x
    2 1 2 1 2 1
    AB b a , y y , z z
    x x
    2 2 2
    2 1 2 1 2 1
    AB AB ) (y y ) (z z )x x
    Division of line segment :
    Suppose position vector of A & B be
    b,
    a
    respectively if
    P(r)
    divides
    AB
    from A
    in ratio. where
    P A, P B
    Co-ordinate of P is
    b
    r , 0, -1
    1
    a
    Co-ordinates of mid point of
    AB
    b
    2
    a
    In
    ABC;If A a , B b ,C c
    then posintion vector of centroid is
    b c
    ,
    3
    a
    g

    Page 1

  • 142
    Co-ordinates of Incentre : In ABC, if co-ordinate of position vector A, B & C are
    , b & ca
    and BC = a, CA = b, AB = c
    Then position vector of incentre is
    bb cc
    b c
    aa
    a
    For equilateral triangle centroid and Incentre are equal.
    Direction co-sine & direction angle:
    If vector
    3
    r , b, c Ra makes angle with unit vectors i, j & k then
    are called direction angles and cos, cos, cos are called direction co-sine
    of
    r
    .
    2 2 2 2 2 2 2 2 2
    b c
    cos , m cos , n cos
    b c b c b c
    a
    l
    a a a
    If l, m and n are direction co-sine of
    2 2 2
    r , b, c , then m n a l
    2 2 2
    cos + cos cos
    If unit vector in the direction of
    r , b, c : a
    b c
    ˆ
    r , , , m, n
    | r | | r | | r |
    a
    l
    Direction ratio : if & m for mx x , mx
    1
    , mx
    2
    , mx
    3
    is called direction
    ratio.
    Vector equation of line:
    If direction of line is
    l
    passes through
    A( ) then equation of line is : r k , k R a a l
    Parametric equation of line:
    1 2 1 2 1 3
    k , y y k , z z k , k Rx x l l l are the parametric equations of line
    passing through
    1 1 1 1 2 3
    , y , z & with direction , , a x l l l l
    Cartesian equation of line
    1 1 1 1 2 3
    r , y, z , , y , z & , , x a x l l l l

    Page 2

  • 143
    1 1 1 1 2 3
    , y, z , , y , z & direction , , x x a x l l l l
    1 1 1
    1 2 3
    y y z zx x
    l l l
    Equation of line passing through
    A( ) and B(b)a
    :
    1 1 1 2 2 2
    , y , z b , y , z & r , y, za x x x
    Vector equation of line
    k(b ) k Rr a a
    Cartesion equation of line
    1 1 1
    2 1 2 1 2 1
    y y z z
    y y z z
    x x
    x x
    Paramaetric equation of line:
    1 2 1 1 2 1 1 2 1
    k , y y k(y y ), z z k z zx x x x
    ,
    k R
    If l
    1
    = 0 & l
    2
    0, l
    3
    0 then
    1 1 1 1 1
    1
    2 3 1 3
    y y z z y y z z
    , OR
    0
    x x
    x x
    l l l l
    Angle between two lines in space R
    3
    :
    r k , r b km k Ra l
    If two lines are parallel & direction of lines
    & m is l
    same of opposite.
    m OR km k R {0} l and l
    If two lines are perpendicular then
    . ml
    If angle between two lines is
    then
    . m
    cos 0 <
    m
    l
    l
    To obtain angle between two lines it is not necessary that two lines are intersecting
    (in R
    3
    only):
    In R
    3
    condtion for two lines
    , r b kmr a kl
    , kR to intersect is
    ( b) . ( m) where , m 0 a l l
    In R
    3
    , condition for two lines
    k & r b + kmr a l
    , k R to interset in
    cartesion form
    1 1 1 2 2 2 1 2 3
    y z , b , y , z , , , a x x l l l l

    Page 3

  • 144
    1 2 1 2 1 2
    1 2 3 1 2 3
    1 2 3
    y y z z
    m , m , m is
    m m m
    x x
    m l l l
    Condition that
    lines
    k , r b km, k R r a l 0, m are co-planer is l
    ( b) . ( m) a l
    Non-coplaner lines :
    If for any two lines l & m there does not exist plane containing them then they are
    non-coplanar.
    Condition for two lines to be co-planer or non-coplaner
    r k & r b + km, k Ra l
    1 1 1 2 2 2 1 2 3 1 2 3
    , y , z , b , y , z , , , , m m , m , ma x x l l l l
    (1) For Co-planer line :
    a l
    vector form
    Cartesian form
    1 2 1 2 1 2
    1 2 3
    1 2 3
    y y z z
    m m m
    x x
    l l l
    (2) For non-co-planerline :
    a b . m 0
    Cartesian form
    1 2 1 2 1 2
    1 2 3
    1 2 3
    x x y y z z
    0
    m m m
    Perpendicular distance of a line from point :
    Perpendicular distance of
    r a k l , k R
    from point
    P p
    is
    (1)
    AP
    P
    PM
    l
    a l
    l
    l
    (2) Cartesian Form
    2 2 2 1 1 1 1 2 3
    , y , z P( , y , z ), , , a x x l l l l
    PM =
    1 2 1 2 1 2
    1 2 3
    j k
    y y z z
    l
    x x
    l l l
    Perpendicular distance between parallel lines:
    k , r b k l, k R , r a l
    is =
    ( ) b a l
    l

    Page 4

  • 145
    Distance between two skew lines
    (b ) . ( m)
    k & r b + km, k R, then p
    | m |
    a l
    r a l
    l
    In R
    3
    relation between two lines
    L : k , k R , M : r b + km, k Rr a l
    using
    ml
    . we will get relation.
    Plane :
    Vector equation of plane :
    If plane passes through A( ), B(b), C(c)a then vector equation is
    r + m (b ) + n(c ), m, n Ra a a
    Parametric Form r + mb + nc where + m + n 1al l
    Cartesian parametric form
    1 1 1 2 2 2 3 3 3
    r , y, z), , y , z , b , y , z , c , y , zx a x x x
    x = lx
    1
    + mx
    2
    + nx
    3
    where l + m + n = 1, l, m, n R
    y = ly
    1
    + my
    2
    + ny
    3
    z = lz
    1
    + mz
    2
    + nz
    3
    Cartesian equation :
    r . (b ) (c )a a a
    1 1 1
    2 1 2 1 2 1
    3 1 3 1 3 1
    y y z z
    y y z z 0
    y y z z
    x x
    x x
    x x
    m
    m 0 m 0
    lines are parallel OR Co- Inside Lines Skew OR Intersecting Lines
    b a 0
    (b a) 0 (b a).( m) 0 (b a).( m) 0
    Parallel Lines Co- Inside Lines Skew Lines Intersecting Lines

    Page 5

  • 146
    If A(x
    1
    , y
    1
    , z
    1
    ), B(x
    2
    , y
    2
    , z
    2
    ), C(x
    3
    , y
    3
    , z
    3
    ), D(x
    4
    , y
    4
    , z
    4
    ) are co-planer then
    2 1 2 1 2 1
    3 1 3 1 3 1
    4 1 4 1 4 1
    y y z z
    y y z z 0
    y y z z
    x x
    x x
    x x
    Equation of plane with intercepts a, b, c with X, Y and Z axis repectively is
    y z
    1
    b c
    x
    a
    (a, b, c 0)
    Equation of plane passing through A( )a with normal
    n
    is
    . n . nr a
    cartesian form
    r , y, z , n , b, c) + by + cz = d (d . n)x a ax a
    If angle between two planes is
    1 2
    1 2
    | n . n |
    t h e n c o s 0
    | n | | n |
    If planes are perpendicular then
    1 2
    n . n
    The equation of plane passing through two parallel lines :
    , k R & r b + km, k Rr a kl
    The equation of plane is
    . (b ) 0r a a l
    Cartesian form
    1 1 1
    2 1 2 1 2 1 1 1 1 2 2 2 1 2 3
    1 2 3
    y y z z
    y y z z 0 ( ,y ,z ), b ( ,y ,z ), ( , , )
    x x
    x x a x x l l l l
    l l l
    The equation of plane passing through two intersecting lines
    + k and r b + km, (r ) . ( m)= 0r a l a l
    Cartesian form
    1 1 1
    1 2 3
    1 2 3
    y y z z
    0
    m m m
    x x
    l l l
    1 2 3 1 2 3 1 2 3
    where ( , , ), ( , , ) & m (m ,m ,m )a x x x l l l l

    Page 6

  • 147
    Perpendicular distance from point
    P(p)
    to plane
    | p . n d |
    . n d is
    n
    r
    =
    1 1 1
    2 2 2
    | + by + cz d |
    b c
    ax
    a
    (Cartesian form)
    Perpendicular distance between two planes
    1 2
    r . n d and r . n d is
    1 2
    | d
    -
    d |
    | n |
    Angle between line
    + k , k R, plane r . n d r a l
    1
    . n
    sin 0
    n
    l
    l
    For two plane
    1 1 1 2 2 1
    : r . n d and : r . n d
    intersection is line then equation of line is
    1 2
    + kn, k R, n n + nr a
    For two plane a
    1
    x + b
    1
    y + c
    1
    z + d
    1
    = 0 and a
    2
    x + b
    2
    y + c
    2
    z + d
    2
    = 0 equation of
    plane passing through the intersection of two planes
    1 1 1 1 2 2 2 2
    ( + b y + c z + d ) + ( + b y + c z + d )a x a x
    , 0, 1

    Page 7

  • 148
    Question Bank
    1. The point on x-axis equidistance from A(2, -5, 7) and B(1, 3, 6) is ....
    (a) (-16, 0, 0) (b) (16, 0, 0) (c) (6, 0, 0) (d) none of these
    2. The equation of the locus of point which are equdistance from (4, 5, 2) and (1, 6,
    3) is ....
    (a) 6x - 2y - 2z + 1 = 0(b) 6x + 2y - 2z + 1 = 0
    (c) 6x + 2y + 2z + 1 = 0 (d) 6x - 2y - 2z - 1 = 0
    3.
    I f the posi ti on vector of A , B , C in R
    3
    are (-1, 2, 0), (1, 2, 3) and (4, 2, 1) then type
    of ABC is ...............
    (a) Right angled (b) Isosceles right angled
    (c) Euilateral (d) Isosceles
    4. If the vertices of quadrilatral are (1, 1, 1), (-2, 4, 1), (-1, 5, 5), (2, 2, 5) then it
    is.....
    (a) rectangle (b) square (c) parallelogram (d) rhombus
    5. A(1, 1, 2), B(2, 3, 5), C(1, 3, 4) and D(0, 1, 1) forms ..... and its area is .........
    (a) Square,
    2 3
    (b) Parallelogram,
    2 3
    (c) Rectangle,
    2 3
    (d) Parallelogram,
    3
    6. For A(7, -3, 1) and B(4, 9, 8), the point that divides
    AB
    from B in the ratio 2:5
    is....
    (a)
    34 39 42
    7 7 7
    , , (b)
    34 39 42
    7 7 7
    , ,
    (c)
    34 39 42
    7 7 7
    , ,
    (d)
    34 39 42
    7 7 7
    , ,
    7. For A(1, 5, 6), B(3, 1, 2) and C(4, -1, 0), B divides
    AC
    from A in ...... ratio
    (A) -2 : 3 (b) 2 : 3 (c) 2 : 1 (d) -2 : 1
    8. A(0, -1, 4), B(1, 2, 3), C(5, 4, -1), then the foot of perpendicular from A on BC
    is.......
    (a) (-3, 3, 1) (b) (3, -3, 1) (c) (3, 3, 1) (d) (3, 3, -1)
    9. If A(a, 1, 3), B(-1, b, 2), C(1, 0, c) are the vertices of ABC whose centroid is
    (2, 3, 5), then values of a, b, c are respectively .......
    (a) 10, 8, 6 (b) 6, 10, 8
    (c) 8, 6, 10 (d) 6, 8, 10

    Page 8

  • 149
    10. If A(6, 4, 6), B(12, 4, 0), C(4, 2, -1) are the vertices of triangle, then it’s incentre
    is....
    (a)
    1022 4
    3 3 3
    , , (b)
    1022 4
    3 3 3
    , ,
    (c)
    1022 4
    3 3 3
    , ,
    (d)
    1022 4
    3 3 3
    , ,
    11. If the mid points of sides of ABC are P(9, 2, 5), Q(-7, 6, 1), R(8, -9, 3) then the
    centroid of ABC is .......
    (A)
    10 1 2
    3 3 3
    , ,
    (b)
    10 1 2
    3 3 3
    , ,
    (c)
    2
    1, 1,
    3
    (d) None of these
    12. For ABC, A(-1, -2, -3), B(1, 2, 3), C(1, 2, 1) the length of median through A is
    .... and centroid is ......
    (a)
    1 2 1
    3 3 3
    3 3, , ,
    (b)
    1 2 1
    3 3 3
    3 5, , ,
    (c)
    1 2 1
    3 3 3
    5, , ,
    (d)
    1 2 1
    3 3 3
    3, , ,
    13. The co-ordinates of the points of trisection of
    AB
    is ..... where A(-5, 7, 2), B(1,
    3, 7)
    (a)
    16 11 11
    3 2 3
    1, 4, 3, , (b)
    16 11 11
    3 2 3
    1, 4, 3, ,
    (c)
    16 11 11
    3 2 3
    1, 4, 3, ,
    (d) None of these
    14. If
    m B
    in ABC and P, Q are points of trisection of hypotenuse AC , then
    BP
    2
    + BQ
    2
    = ...........
    (a)
    5
    9
    AC
    2
    (b)
    5
    9
    AC (c)
    25
    81
    AC
    2
    (D)
    25
    81
    AC
    15. If G (0) is centroid of ABC, then
    GA + GB + GC
    (a)
    0
    (b) 0 (c)
    + y zx
    (d)
    + y z
    3
    x
    16. If A - P - B and
    AP m
    PB n
    , then for every point O’ in space ......
    (a) (m - n)
    OP
    (b) (m + n)
    OP
    (c) m
    OP
    (d) n
    OP

    Page 9

  • 150
    17. In ABC, if mid points of
    AB
    and
    AC
    are D and E respectively, then
    BE + DC
    (a)
    3
    2
    BE
    (b)
    2
    3
    BE
    (c)
    3
    2
    BC (D)
    2
    3
    BC
    18. In parallelogram ABCD, AB
    2
    + BC
    2
    + CD
    2
    + DA
    2
    = k(AC
    2
    + BD
    2
    ), then k = .......
    (a) 4 (b) 16 (d) 2 (d) 1
    19. If sides of regular hexagon ABCDEF,
    AB and BC
    are
    and ba
    respectively,
    then
    AF
    (a)
    b a
    (b)
    b
    a
    (c)
    b
    a
    (d)
    a
    20. For regular hexagon ABCDEF,
    AB + AC + AD + AE + AF
    (a)
    0
    (b)
    3 AD
    (c)
    2 AD
    (d)
    4 AD
    21. For regular hexagon ABCDEF,
    AB + BC + CD + AF + EF + ED
    (a)
    3 AD
    (b)
    2 AD
    (c)
    0
    (d)
    2 AD
    22. If the centroid of ABC and PQR is G and G’ respectively then
    AP + BQ + CR
    (a)
    GG'
    (b) 3
    GG'
    (c) 2
    GG'
    (d) 4
    GG'
    23. If three vertices of rhombus are (6, 0, 1) (8, -3, 7) (2, -5, 10), then forth vertices
    = ....
    (a) (0, -2, -4) (b) (0, -2, 4) (c) (0, 2, 4) (d) (0, 2, -4)
    24. If vector
    r
    forms an angle with x, y, z-axis then sin
    2
    + sin
    2
    + sin
    2
    =
    ...........
    (a) 1 (b) 2 (c) -1 (d) -2
    25. If are direction co-sines of x , then cos 2 + cos 2 + cos 2 = ..........
    (a) 1 (b) 2 (c) -1 (d) -2
    26. If vector
    r
    form angles
    and
    2
    with x and z axis respectively, then angle with
    y-axis is........
    (a)
    3
    4
    ,
    (b)
    4
    ,
    (c)
    3
    4
    ,
    (d)
    3
    3
    ,
    27. If
    is an angle with positive direction of x-axis in R
    3
    the no. of such vectors
    are...
    (a) 1 (b) 2 (c) 3 (d) infinite

    Page 10

Download this file to view remaining 66 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.