Indefinite and Definite Integration (Solved MCQs and Notes)
Notes
64 Pages
NN
Contributed by
Nikita Narasimhan
Loading
- 400Unit - 9Indefinite And Definite IntegrationImportant Points1. If ( )dF x c f xdx thenf x dx F x c ( )f x dxis indefinite integral of f(x) w.r.to x where c is the arbitrary constant.Rules of indefinite Integration1 If f and g are integrable function on [a,b] and f+g is also integrable function on [a,b], then( )f x g x dx f x dx g x dx .If1 2, , . . . ,nf f f an integrable function on [a,b] then 1 2 3 1 2... ... .n nf x f x f x f x dx f x dx f x dx f x dx 2 (i) If f is integrable on [a, b] and k is the real constant then, kf is also integrable thenkf x dx k f x dx (ii) 1 1 2 2..........n nk f x k f x k f x dx 1 1 2 2 n nk f d k f d ......... k f x dx x x x x3 If f and g are integrable functions on [a, b] thenf x g x dx f x dx g x dx Important formulae1 1; 1 ;1 nnxx dx c n R x RnIf n = 0 thend c x x2 1d log| | c; R 0 x x xx3 (i) ; 1 ,logxxeaa dx c a R x Ra (ii)e dx e c; R x xx4sin cos ,x dx x c x R
Page 1
- 4015cos sin ,x dx x c x R 6 tan c , 2 k 1 , k Z2 x x x7Z 2cosec x dx = - cot x + c , x k , k8 Zπs ec x ta n x d x = s e c x + c , x 2 k - 1 , k2 9, cosec x.cotxd x = -cosec x+c, x k k Z10 12 21 1tan , 0 ,xdx c a R x Rx a a a 11cot , 0 , xc a R x Ra a11 2 2dx 1 x - a= log + c, a R - 0 , x ± ax - a 2a x + a 12 2 2dx 1 x+ a= log + c , a R - 0 , x ± aa - x 2a x - a 1322log , | | | |dxx x k c x kx k 14 12 2sin , , , 0dx xc x a a aaa x 1cos , , ; 0xc x a a aa 1512 21 1sec , | | | | 0| |xdx c x aa ax x a 11cos , | | | | 0xec c x aa a 16. 121 1tan , , 0bdx x c a ba bx aab Method of substitution* If: ,g R is continuous and differentiable on ,
Page 2
- 402and tg is continuous and non zero on ,if Rg ,a band Rb,a:f is continuous and x = g(t) then f x dx=[ ' ]f g t g t dt* Iff x dx F x+c then 1f ax b dx F a ba + C,whercRI:f is continuous 0a * 1', 1, 0, 01nnf xf x f x dx c n f x f xn * f' xdx = log | f x | + c,f x( f andfare continuous f 0, f 0x x )* '2f xdx f x cf x ( f andfare continuous f 0, f 0x x )17.tan x dx = log | sec x| + c= - log | cos x | + c,2kx k z 18.cot log| sin | ,x dx x c ,2kx k z log | cosec | c x19.cosec log|cosec cot | ,x dx x x c ,2kx k z x= log | tan | + c220.sec log | sec tan | , ,2kx dx x x c x k z log | tan | , ,4 2 2x kc x k z Integrals Substitutions(i)2 2x atanx a orcotx a (ii)2 2x asecx a orcosecx a (iii)2 2a xsinx a orcosx a
Page 3
- 403(iv)a xa xcos 2x a (v)22ax x22 sinx a (vi) 22 22ax x a x a sinx a a orcosaFor the integrals :1 1,cos sina b x a c x and1,cos sina b x c x takingtan2xt* Integration by partsduu v dx u v dx v dx dxdx 21.22 2 2 2 2 2log2 2x ax a dx x a x x a c 22.22 2 2 2 2 2log2 2x ax a dx x a x x a c 23. 22 2 2 2 1sin 02 2x a xa x dx a x c aa 24. 2 2sin sin cosaxaxee bx dx a bx b bx ca b 25. axax2 2ee cos bx dx = a cos bx+ b sin bx + ca + b26. axax2 2ee sin bx dx = sin bx - θ + ca + b 2 22 2cos ; sin ; 0, 2a ba ba b 27. 2 2cos cosaxaxee bx dx bx ca b 2,0;babsin;baacos2222
Page 4
- 40428.' x xe f x f x dx e f x cDefinite IntegrationLimit of a Sum1.01( ) lim ( )bnhiaf x d x h f a ih 2. 1limbnniab a b a b af x dx f a i Where hn n n Fundamental theorem of definite IntegrationIf f is continuous on [a, b] and F is differentiable on (a, b) such that( , ) ( ( )) ( )dx a b if F x f x thendx baf x dx F b F a Rules of definite Integration1 If f and g are continuous in [a, b] then ( ) ( )baf x g x dx=( ) ( )baf x dx g x dx 2 If f is continuous on [a, b] and k is real constant, then b ba ak f n dx k f x dx3 If f is continuous on the [a, b] and a < c < b then( ) ( ) ( )b c ba a cf x dx f x dx f x dx 4( ) ( )b aa bf x dx f x dx 5( ) ( ) ( )b b ba a af x dx f t dt f u du Theorems1 If f is even and continuous on the [-a, a] then0( ) 2 ( )a aaf x dx f x dx 2 If f is odd and continuous on the [-a, a] then( ) 0aaf x dx
Page 5
- 4053 If f is continuous on [0, a] then0 0( ) ( ) a af x dx f a x dx4 If f is continuous on [a, b] then b ba af d f a b d x x x x5 If f is continuous on [0, 2a] then20 0 0( ) ( ) (2 )a a af x dx f x dx f a x dx Application of Integration1 The area A of the region bounded by the curve y=f(x), X - axis and the linesx = a, x = b is given by A =I, where I =( )baf x dxor I =baydx2 The area A of the region bounded by the curve x = g(y) and the line y = a and y = b givenby A =IWhere I =( )bag y dyor I =baydx3 If the curve y = f(x) intersects X - axis at (c, 0) only and a < c < b then the area of theregion bounded by y = f(x), x = a, x = b and X - axis is given byA =I1+I2where I1=caydx, I2=bcydx4 If two curves y = f1(x) and y = f2(x) intersect each other at only two points forx = a and x = b (ab) then the area enclosed by them is given byA =Iand I = 1 2( ) ( )baf x f x dx5 If the two curves x = g1(y) and x = g2(y) intersect each other at only two points fory = a and y = b (ab) then the area enclosed by them is given byA =Iwhere I = 1 2( ) ( )bag y g y dy
Page 6
- 406Question Bank(Indefinite Integration)22 2(1) ________1 tan(a) log sec tan (b) 2sec21(c) log sin (d) log sin cos21(2) ________1(a) 2logxxx xdxcxxx xx x x x xedx cee e 2 25log 3log4log 2log2 3(b) 2log(c) 2log 1 (d) log 1(3) _________(a) 2 (b) log (cx xx xx xx xxee ee ee edx ce ee e x 3 2) (d)3 2(4) _________11 1 1(a) log (b) log11 1 1(c) log 1 (d) loglog(5)nn nn nnnnx xdxcx xx xn x n xxxn n xx 12 2cot21 log_________1(a) log log 1 (b) log 1 log1 1 1(c) log (d) log2(6) 1 _________1xxdx cx xx x x xx xx xxe dx cx 1 1 1 1cot cot cot cot1 1(a) (b) (c) (d)2 2x x x xxe e xe e
Page 7
- 407 14log 54 4tan(7) _________cos2 1 2 3(a) (b) (c) (d)cos cos 3 cos 2 cos(8) 1 _________1(a) log 1 (b) - log 1 (c)5xxdx cxx x x xe x cx x 4 531log 1 (d) log 15(9) cos _________1 1 1(a) cos cot log cos cot (b) cos cot2 2 21 1 1 1(c) cos cot log cos cot (d) cos cot log cos cot2 2 2 2x xec x dx cec x x ecx x ec x xec x x ecx x ec x x ecx 221132(10) If 2 then _______1 1(a) (b) log 2 (c) 2 (d)2log 2 2(11) 1 _________(a)xxexxxdx k c kxx e dx cxe (b) (c) (d)(12) sin log cos log _______(a) sin log cos log (b) sin log(c) cos log (d) sin log cos log(x x xxe xe xex x dx cx x - x xx x x x 79 8 8 8 81 1 2 1 1 213) 4 3 _________3 3 3 8 33 3 8 33 3(a) (b) (c) (d)9 8 72 72 8(14) _________3 2(a) 2 tan 2 (b) 2 tan 3 (c) 2 tan (d) 2 tan 2(1x x dx cx x x x x x xdxcx xx x x x -1 -12 2 2 25) _________21 1(a) 1 (b) 1 (c) 1 (d) 12 2xx xx x x xece ee e e e
Page 8
- 4082cos(16) If log sin 1 then _________sin 2sin 11(a) 2 (b) 1 (c) (d) -22(17) _________1xxdx A x c Ax xdxce 28 82 21 1(a) log (b) log (c) log (d) log1 2 1cos sin(18) ________1 2sin coscos2 sin 2(a) - (b) -2x x x xx x x xe e e ee e e ex xdx cx xx x 2111 1cos 2 sin 2(c) (d)2 2 21(19) log _________1 logtan logtan(a) (b) tan log (c) (d) tan(20) Ix xd x dx cxxx xx x 21 cos8xf cos8 then A _______cot 2 tan 21 1 1 1(a) (b) (c) (d)16 8 16 84 6(21) If log 9 4 th9 4x xxx xdx A x Cx xe edx Ax B e ce e 16 6en ______ and _____3 35 3 35 3 35 3 35(a) (b) (c) (d)2 36 2 36 2 36 2 36tan 2(22) If tan then _______cos 21(a)2A B, , , ,dx xK c Ksm x x 32321(b) 1 (c) 1 (d)2(23) If 1 then _______14 3(a) (b)3 4xdx P x c Px -4 -3(c) (d)3 4sec(24) __________sin 2 sinxdxcx
Page 9
- 409 41 1 36(a) 2sec tan tan (b) 2sec tan tan(c) 2sec cot cot (d) 2sec cot cot1(25) If tan tan then _______1(a) 3x xx xxdx x P x c Px 21 1(b) (c) (d) 33 3log 1(26) _________log(a) log (b) log (c) (d)log log(27)xdx cxx xx x x xx x 2log________(a) log (b) log (c) log (d) log(28) If cosec cot log sin then _______(a) 1x xxx x x x xe exdx cxex e x e x x xexx xdx P x x Q x c P Q 6 7 7(b) 2 (c) 0 (d) -1(29) If log log then _________6 1 1(a) (b) (c)49 49 49x xdx Px x Qx c P Q 6(d)491(30) log log _________log1(a) (b) log log (c) log log (d) log loglog logx dx cxxx x x x xx x 221221(31) __________1 1 1 1(a) (b) (c) (d)xxxexdx cx x x xx x x xe e e e
Page 10
Download this file to view remaining 54 pages
Related documents:
- National Recruitment Agency - Notes
- Political Science and International Relations (Paper II) 2015 Question Paper - Question Paper
- Analysis of Financial Statements MCQs with Answers - MCQ
- Electrostatics Notes and MCQs - Notes
- Problem Solving and Python Programming Dec Jan 2019 QPaper - Question Paper
- CONCEPT RECAPITULATION TEST - II Paper 2 [ANSWERS, HINTS & SOLUTIONS CRT –II]
- Psychology (Paper I) 2017 Question Paper - Question Paper
- NIRBHAYA FUND - Notes
- Economics (Paper I) 2017 Question Paper - Question Paper
- Recent Trends in IT Solved MCQs - MCQ
- Consumer Behavior MCQs - MCQ
- GENERAL STUDIES Test Booklet [Answers]
- MODES OF ENTRY INTO INTERNATIONAL BUSINESS - INTERNATIONAL BUSINESS - Notes
- Business Law MCQs with Answers - MCQ
- Sociology (Paper I) 2021 Question Paper - MCQ
- Applied Mathematics
- Atoms and Nucleus Notes and MCQs - Notes
- Physics (Paper II) 2017 Question Paper - Question Paper
- PRELIMS 2021 QUESTION PAPER – A SERIES - Question Paper
- Advanced JAVA Solved MCQs - MCQ