Indefinite and Definite Integration (Solved MCQs and Notes)

Notes 64 Pages
NN

Contributed by

Nikita Narasimhan
Loading
  • 400
    Unit - 9
    Indefinite And Definite Integration
    Important Points
    1. If
    ( )
    d
    F x c f x
    dx
    then
    f x dx F x c
    ( )f x dx
    is indefinite integral of f(x) w.r.to x where c is the arbitrary constant.
    Rules of indefinite Integration
    1 If f and g are integrable function on [a,b] and f+g is also integrable function on [a,b], then
    ( )f x g x dx f x dx g x dx
    .
    If
    1 2
    , , . . . ,
    n
    f f f an integrable function on [a,b] then
    1 2 3 1 2
    ... ... .
    n n
    f x f x f x f x dx f x dx f x dx f x dx
    2 (i) If f is integrable on [a, b] and k is the real constant then, kf is also integrable then
    kf x dx k f x dx
    (ii)
    1 1 2 2
    ..........
    n n
    k f x k f x k f x dx
    1 1 2 2 n n
    k f d k f d ......... k f x dx
    x x x x
    3 If f and g are integrable functions on [a, b] then
    f x g x dx f x dx g x dx
    Important formulae
    1
    1
    ; 1 ;
    1
    n
    n
    x
    x dx c n R x R
    n
    If n = 0 then
    d c
    x x
    2
    1
    d log| | c; R 0
    x x x
    x
    3 (i)
    ; 1 ,
    log
    x
    x
    e
    a
    a dx c a R x R
    a
    (ii)
    e dx e c; R
    x x
    x
    4
    sin cos ,
    x dx x c x R

    Page 1

  • 401
    5
    cos sin ,
    x dx x c x R
    6
    tan c , 2 k 1 , k Z
    2
    x x x
    7
    Z
    2
    cosec x dx = - cot x + c , x k , k
    8
    Z
    π
    s ec x ta n x d x = s e c x + c , x 2 k - 1 , k
    2
    9
    ,
    cosec x.cotxd x = -cosec x+c, x k k Z
    10
    1
    2 2
    1 1
    tan , 0 ,
    x
    dx c a R x R
    1
    1
    cot , 0 ,
    x
    c a R x R
    a a
    11
    2 2
    dx 1 x - a
    = log + c, a R - 0 , x ± a
    x - a 2a x + a
    12
    2 2
    dx 1 x+ a
    = log + c , a R - 0 , x ± a
    a - x 2a x - a
    13
    2
    2
    log , | | | |
    dx
    x x k c x k
    x k
    14
    1
    2 2
    sin , , , 0
    dx x
    c x a a a
    a
    a x
    1
    cos , , ; 0
    x
    c x a a a
    a
    15
    1
    2 2
    1 1
    sec , | | | | 0
    | |
    x
    dx c x a
    a a
    x x a
    1
    1
    cos , | | | | 0
    x
    ec c x a
    a a
    16.
    1
    2
    1 1
    tan , , 0
    b
    dx x c a b
    a bx a
    ab
    Method of substitution
    * If
    : ,
    g R
    is continuous and differentiable on
    ,

    Page 2

  • 402
    and
    tg
    is continuous and non zero on
    ,
    if R
    g
    ,a b
    and
    Rb,a:f
    is continuous and x = g(t) then
    f x dx
    =
    [ ' ]f g t g t dt
    * If
    f x dx F x
    +c then
    1
    f ax b dx F a b
    a
    + C,
    wherc
    RI:f
    is continuous
    0a
    *
    1
    '
    , 1, 0, 0
    1
    n
    n
    f x
    f x f x dx c n f x f x
    n
    *
    f' x
    dx = log | f x | + c,
    f x
    ( f and
    f
    are continuous
    f 0, f 0x x
    )
    *
    '
    2
    f x
    dx f x c
    f x
    ( f and
    f
    are continuous
    f 0, f 0x x
    )
    17.
    tan x dx = log | sec x| + c
    = - log | cos x | + c
    ,
    2
    k
    x k z
    18.
    cot log| sin | ,
    x dx x c
    ,
    2
    k
    x k z
    log | cosec | c x
    19.
    cosec log|cosec cot | ,
    x dx x x c
    ,
    2
    k
    x k z
    x
    = log | tan | + c
    2
    20.
    sec log | sec tan | , ,
    2
    k
    x dx x x c x k z
    log | tan | , ,
    4 2 2
    x k
    c x k z
    Integrals Substitutions
    (i)
    2 2
    x a
    tanx a
    or
    cotx a
    (ii)
    2 2
    x a
    secx a
    or
    cosecx a
    (iii)
    2 2
    a x
    sinx a
    or
    cosx a

    Page 3

  • 403
    (iv)
    a x
    a x
    cos 2x a
    (v)
    2
    2ax x
    2
    2 sinx a
    (vi)
    2
    2 2
    2ax x a x a
    sinx a a
    or
    cosa
    For the integrals :
    1 1
    ,
    cos sina b x a c x
    and
    1
    ,
    cos sina b x c x
    taking
    tan
    2
    x
    t
    * Integration by parts
    du
    u v dx u v dx v dx dx
    dx
    21.
    2
    2 2 2 2 2 2
    log
    2 2
    x a
    x a dx x a x x a c
    22.
    2
    2 2 2 2 2 2
    log
    2 2
    x a
    x a dx x a x x a c
    23.
    2
    2 2 2 2 1
    sin 0
    2 2
    x a x
    a x dx a x c a
    a
    24.
    2 2
    sin sin cos
    ax
    ax
    e
    e bx dx a bx b bx c
    a b
    25.
    ax
    ax
    2 2
    e
    e cos bx dx = a cos bx+ b sin bx + c
    a + b
    26.
    ax
    ax
    2 2
    e
    e sin bx dx = sin bx - θ + c
    a + b
    2 2
    2 2
    cos ; sin ; 0, 2
    a b
    a b
    a b
    27.
    2 2
    cos cos
    ax
    ax
    e
    e bx dx bx c
    a b
    2,0;
    ba
    b
    sin;
    ba
    a
    cos
    22
    22

    Page 4

  • 404
    28.
    '
    x x
    e f x f x dx e f x c
    Definite Integration
    Limit of a Sum
    1.
    0
    1
    ( ) lim ( )
    b
    n
    h
    i
    a
    f x d x h f a ih
    2.
    1
    lim
    b
    n
    n
    i
    a
    b a b a b a
    f x dx f a i Where h
    n n n
    Fundamental theorem of definite Integration
    If f is continuous on [a, b] and F is differentiable on (a, b) such that
    ( , ) ( ( )) ( )
    d
    x a b if F x f x then
    dx
    b
    a
    f x dx F b F a
    Rules of definite Integration
    1 If f and g are continuous in [a, b] then
    ( ) ( )
    b
    a
    f x g x dx
    =
    ( ) ( )
    b
    a
    f x dx g x dx
    2 If f is continuous on [a, b] and k is real constant, then
    b b
    a a
    k f n dx k f x dx
    3 If f is continuous on the [a, b] and a < c < b then
    ( ) ( ) ( )
    b c b
    a a c
    f x dx f x dx f x dx
    4
    ( ) ( )
    b a
    a b
    f x dx f x dx
    5
    ( ) ( ) ( )
    b b b
    a a a
    f x dx f t dt f u du
    Theorems
    1 If f is even and continuous on the [-a, a] then
    0
    ( ) 2 ( )
    a a
    a
    f x dx f x dx
    2 If f is odd and continuous on the [-a, a] then
    ( ) 0
    a
    a
    f x dx

    Page 5

  • 405
    3 If f is continuous on [0, a] then
    0 0
    ( ) ( )
    a a
    f x dx f a x dx
    4 If f is continuous on [a, b] then
    b b
    a a
    f d f a b d
    x x x x
    5 If f is continuous on [0, 2a] then
    2
    0 0 0
    ( ) ( ) (2 )
    a a a
    f x dx f x dx f a x dx
    Application of Integration
    1 The area A of the region bounded by the curve y=f(x), X - axis and the lines
    x = a, x = b is given by A =
    I
    , where I =
    ( )
    b
    a
    f x dx
    or I =
    b
    a
    ydx
    2 The area A of the region bounded by the curve x = g(y) and the line y = a and y = b given
    by A =
    I
    Where I =
    ( )
    b
    a
    g y dy
    or I =
    b
    a
    ydx
    3 If the curve y = f(x) intersects X - axis at (c, 0) only and a < c < b then the area of the
    region bounded by y = f(x), x = a, x = b and X - axis is given by
    A =
    I
    1
    +
    I
    2
    where I
    1
    =
    c
    a
    ydx
    , I
    2
    =
    b
    c
    ydx
    4 If two curves y = f
    1
    (x) and y = f
    2
    (x) intersect each other at only two points for
    x = a and x = b (a
    b) then the area enclosed by them is given by
    A =
    I
    and I =
    1 2
    ( ) ( )
    b
    a
    f x f x dx
    5 If the two curves x = g
    1
    (y) and x = g
    2
    (y) intersect each other at only two points for
    y = a and y = b (a
    b) then the area enclosed by them is given by
    A =
    I
    where I =
    1 2
    ( ) ( )
    b
    a
    g y g y dy

    Page 6

  • 406
    Question Bank
    (Indefinite Integration)
    2
    2 2
    (1) ________
    1 tan
    (a) log sec tan (b) 2sec
    2
    1
    (c) log sin (d) log sin cos
    2
    1
    (2) ________
    1
    (a) 2log
    x
    x
    x x
    dx
    c
    x
    x
    x x
    x x x x x
    e
    dx c
    e
    e e
    2 2
    5log 3log
    4log 2log
    2 3
    (b) 2log
    (c) 2log 1 (d) log 1
    (3) _________
    (a) 2 (b) log (c
    x x
    x x
    x x
    x x
    x
    e
    e e
    e e
    e e
    dx c
    e e
    e e x
    3 2
    ) (d)
    3 2
    (4) _________
    1
    1 1 1
    (a) log (b) log
    1
    1 1 1
    (c) log 1 (d) log
    log
    (5)
    n
    n n
    n n
    n
    n
    n
    x x
    dx
    c
    x x
    x x
    n x n x
    x
    x
    n n x
    x
    1
    2 2
    cot
    2
    1 log
    _________
    1
    (a) log log 1 (b) log 1 log
    1 1 1
    (c) log (d) log
    2
    (6) 1 _________
    1
    x
    x
    dx c
    x x
    x x x x
    x x
    x x
    x
    e dx c
    x
    1 1 1 1
    cot cot cot cot
    1 1
    (a) (b) (c) (d)
    2 2
    x x x x
    xe e xe e

    Page 7

  • 407
    1
    4log 5
    4 4
    tan
    (7) _________
    cos
    2 1 2 3
    (a) (b) (c) (d)
    cos cos 3 cos 2 cos
    (8) 1 _________
    1
    (a) log 1 (b) - log 1 (c)
    5
    x
    x
    dx c
    x
    x x x x
    e x c
    x x
    4 5
    3
    1
    log 1 (d) log 1
    5
    (9) cos _________
    1 1 1
    (a) cos cot log cos cot (b) cos cot
    2 2 2
    1 1 1 1
    (c) cos cot log cos cot (d) cos cot log cos cot
    2 2 2 2
    x x
    ec x dx c
    ec x x ecx x ec x x
    ec x x ecx x ec x x ecx
    2
    2
    1
    1
    3
    2
    (10) If 2 then _______
    1 1
    (a) (b) log 2 (c) 2 (d)
    2log 2 2
    (11) 1 _________
    (a)
    x
    x
    e
    x
    x
    x
    dx k c k
    x
    x e dx c
    xe
    (b) (c) (d)
    (12) sin log cos log _______
    (a) sin log cos log (b) sin log
    (c) cos log (d) sin log cos log
    (
    x x x
    xe xe xe
    x x dx c
    x x - x x
    x x x x
    7
    9 8 8 8 8
    1 1 2 1 1 2
    13) 4 3 _________
    3 3 3 8 33 3 8 33 3
    (a) (b) (c) (d)
    9 8 72 72 8
    (14) _________
    3 2
    (a) 2 tan 2 (b) 2 tan 3 (c) 2 tan (d) 2 tan 2
    (1
    x x dx c
    x x x x x x x
    dx
    c
    x x
    x x x x
    -1 -1
    2 2 2 2
    5) _________
    2
    1 1
    (a) 1 (b) 1 (c) 1 (d) 1
    2 2
    x
    x x
    x x x x
    e
    c
    e e
    e e e e

    Page 8

  • 408
    2
    cos
    (16) If log sin 1 then _________
    sin 2sin 1
    1
    (a) 2 (b) 1 (c) (d) -2
    2
    (17) _________
    1
    x
    x
    dx A x c A
    x x
    dx
    c
    e
    2
    8 8
    2 2
    1 1
    (a) log (b) log (c) log (d) log
    1 2 1
    cos sin
    (18) ________
    1 2sin cos
    cos2 sin 2
    (a) - (b) -
    2
    x x x x
    x x x x
    e e e e
    e e e e
    x x
    dx c
    x x
    x x
    2
    1
    1
    1 1
    cos 2 sin 2
    (c) (d)
    2 2 2
    1
    (19) log _________
    1 log
    tan log
    tan
    (a) (b) tan log (c) (d) tan
    (20) I
    x x
    d x dx c
    x
    x
    x x
    x x
    2
    1 cos8x
    f cos8 then A _______
    cot 2 tan 2
    1 1 1 1
    (a) (b) (c) (d)
    16 8 16 8
    4 6
    (21) If log 9 4 th
    9 4
    x x
    x
    x x
    dx A x C
    x x
    e e
    dx Ax B e c
    e e
    1
    6 6
    en ______ and _____
    3 35 3 35 3 35 3 35
    (a) (b) (c) (d)
    2 36 2 36 2 36 2 36
    tan 2
    (22) If tan then _______
    cos 2
    1
    (a)
    2
    A B
    , , , ,
    dx x
    K c K
    sm x x
    3
    2
    3
    2
    1
    (b) 1 (c) 1 (d)
    2
    (23) If 1 then _______
    1
    4 3
    (a) (b)
    3 4
    x
    dx P x c P
    x
    -4 -3
    (c) (d)
    3 4
    sec
    (24) __________
    sin 2 sin
    xdx
    c
    x

    Page 9

  • 409
    4
    1 1 3
    6
    (a) 2sec tan tan (b) 2sec tan tan
    (c) 2sec cot cot (d) 2sec cot cot
    1
    (25) If tan tan then _______
    1
    (a) 3
    x x
    x x
    x
    dx x P x c P
    x
    2
    1 1
    (b) (c) (d) 3
    3 3
    log 1
    (26) _________
    log
    (a) log (b) log (c) (d)
    log log
    (27)
    x
    dx c
    x
    x x
    x x x x
    x x
    2
    log
    ________
    (a) log (b) log (c) log (d) log
    (28) If cosec cot log sin then _______
    (a) 1
    x x
    x
    x x x x x
    e ex
    dx c
    x
    e
    x e x e x x xe
    x
    x xdx P x x Q x c P Q
    6 7 7
    (b) 2 (c) 0 (d) -1
    (29) If log log then _________
    6 1 1
    (a) (b) (c)
    49 49 49
    x xdx Px x Qx c P Q
    6
    (d)
    49
    1
    (30) log log _________
    log
    1
    (a) (b) log log (c) log log (d) log log
    log log
    x dx c
    x
    x
    x x x x x
    x x
    2
    2
    1
    2
    2
    1
    (31) __________
    1 1 1 1
    (a) (b) (c) (d)
    x
    x
    x
    e
    x
    dx c
    x x x x
    x x x x
    e e e e

    Page 10

Download this file to view remaining 54 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.