ENGINEERING MATHEMATICS I QPaper Jan 2014

Question Paper 6 Pages
NT

Contributed by

Naresh Tella
Loading
  • Re
    g. Ko. :
    IL
    _,____,_---1----1_:_.i__..1-.i........1-.....1--'---'
    Qu
    est
    ion
    Pap
    er
    Code:
    37001
    B.E.
    /B
    .
    Tech
    .
    DEGREE
    EXAMINATION, JANUARY 2014.
    First
    Semester
    Civil En
    gineering
    MA615l-MATHEl\1A'I'ICS
    - 1
    (Commo
    n
    to
    all
    Branches
    except
    Marine
    Engmeering)
    (Regulation
    20
    13)
    Tune
    :
    Three
    hours
    Maximum
    : 100
    marks
    A
    nswer
    ALL
    questions
    .
    PART
    A -
    (10
    x 2 =
    20
    mark
    s)
    1.
    If
    the
    eigen
    values
    of
    the
    ma
    true A
    of
    order
    3 x 3
    arc
    2, 3
    and
    1,
    then
    find
    the
    e1gen
    ,·alues
    of
    adjoint
    of
    A.
    2.
    If
    ;_
    is
    th
    e
    eigen
    value
    of
    the
    matrix
    A,
    then
    prove
    that
    J.
    3
    is
    the
    cigen value
    of
    A
    1
    3.
    Give
    an
    exam
    ple
    for conditionally
    convergent
    series.
    4.
    .
    111111
    Te
    st
    the
    convergence
    of
    the
    series
    l - - - - + - + - - - - -
    ....
    to
    oo
    .
    2
    2
    s
    2
    4
    2
    5
    2
    1
    2
    s
    2
    5. \'{h
    at
    is
    t
    he
    c
    urv
    atu
    re
    of
    the
    circle
    (x
    - 1
    )2
    + (y +
    2)
    2
    =
    16
    at
    any
    po
    in
    t on
    it?
    6.
    Find
    th
    e envelope
    of
    the
    family
    of
    curves
    y = nu: +
    .!..
    ,
    whore
    m
    is
    the
    m
    7.
    parameter
    .
    If
    :c
    1
    1 y' = I .
    then
    find
    dy
    .
    dx
    Downloaded from: annauniversityedu.blogspot.com

    Page 1

  • I I , "
    ''
    ,0)
    , -1110,th,11fi11d
    ;,(y, y)
    n 1· I 1 1 I I I l I
    f>
    I
    ·,
    111
    ,l
    .,
    x,
    11
    111
    " ,J,,ublr-
    ''
    · ' 1
    I
    \P
    'ln·n
    ,o
    u1
    1<
    r,
    >Y
    t H'
    1n
    P·~ \" ) ,
    ..,,
    11\ll
    '
    \:1,ll!OJ\
    u
    10.
    Evalual
    c J
    J,.
    rL,r/0
    11.
    u
    I)
    PAltT
    13
    - (5 x
    JG==
    80
    ma
    rk
    s)
    (a)
    (i)
    . [2
    Find
    th
    e e
    1g
    en va
    lu
    es
    and the e
    1g
    en v
    ecto
    rs of t
    he
    malrix
    1
    . l
    : ~1-
    2 2
    (
    8)
    (
    1i
    ) Us
    in
    g
    Cny
    l
    ey
    -Ham1.lt
    on
    th
    eor
    em find A -
    1
    o
    nd
    ,1
    •.
    tf
    A ·H
    _:
    -;1 (
    8)
    Or
    (b) R
    ed
    uce
    the
    qu
    a
    drat
    ic
    fo
    rm
    6x
    2
    +
    3y
    2
    +
    3z
    2
    -
    4xy
    -
    2yz
    +
    tic-a
    mt
    o a
    cano
    ni
    ca
    l
    fo
    rm by a n o
    rth
    ogo
    nal
    r
    ed
    uc
    ti
    on.
    Hen
    ce
    find
    it
    s r
    ank and
    n
    at
    ur
    e. (
    16
    )
    12. (a) (
    i)
    Examine
    the
    con
    ve
    rgence
    and
    the
    divergence
    of
    th
    e fo
    ll
    owm g
    se
    ri
    es
    2 6 2
    jtj
    3
    2"-2(•-I)
    ( )
    ) + - X + - X + - X + .... +
    ---
    X + .... X > 0 . (8)
    G 9
    17
    2" + I
    (n)
    Di
    scu
    ss
    the
    co
    nv
    erge
    n
    ce
    nnd
    the
    divergence
    of
    th
    e follo
    wmg
    se
    ri
    es
    I J I l
    3
    -
    3
    (1
    + 2) +
    3
    (1
    + 2 +
    3)
    -
    3
    (1 + 2 + 3 + ,j) + " " (8)
    2 3 4 5
    Or
    (b)
    (1)
    '!'est
    the
    co
    nv
    erge
    nce of
    the
    se
    ne
    s I, nc-•' .
    (8)
    n oO
    (
    11
    )
    Te
    st
    the
    co
    nv
    ergence
    of
    the
    se
    ri
    es
    x x
    2
    x
    1
    x'
    _ _ _ _ _
    ..,
    _ _
    ___
    +
    (0
    < X <
    1)
    .
    1 + x I x
    2
    I + x
    3
    1 +
    x'
    ....
    (
    8)
    2
    37001
    Downloaded from: annauniversityedu.blogspot.com

    Page 2

  • ,.
    13.
    fol
    (il
    Fmd
    the
    radiu
    s
    of
    curvature
    of
    the
    cyclmd x =
    a(O
    +
    sm
    0),
    Y =
    a(l
    -
    cosO).
    (8)
    (n) F
    md
    the
    equation
    of
    the
    evolutes
    of
    the
    parabola
    y
    2
    =
    4ax
    . (8)
    (
    h)
    (i)
    Or
    Find
    the
    equation
    of
    circle
    of
    curvature
    at
    (.9..
    E.)
    on
    4'4
    fx
    +
    ,JY=
    a
    .
    (8)
    (ii)
    Find
    the
    enve
    lope
    of
    tho
    family
    of
    straight
    lines
    y =
    mx
    -
    2am
    -
    am
    3
    ,
    where
    111
    is
    the
    parameter.
    (8)
    14. (a) (i)
    Expand
    c'
    log(! +
    y)
    in
    powers
    of
    x
    and
    y
    upto
    the
    third
    degree
    terms
    using
    Taylor•~ theorem. (8)
    (11)
    Y
    •x
    xy
    a
    (u.
    V,
    W
    If
    u =
    _::.
    ,
    ,,
    =
    .::....
    , w = - , find
    X
    )'
    Z
    ax,y,z}'
    (8)
    Or
    (b)
    (
    i)
    J)1scuss
    the
    maxima
    and
    min
    i
    ma
    of
    f(x,
    y)
    = x
    3
    y
    2
    (!_
    - x -
    y}.
    (8)
    (
    u)
    (
    )
    cw
    C/L
    aw
    If
    w = f y -
    z,::
    -
    x,
    x - y ,
    then
    show
    that
    - + - + - =
    0.
    (8)
    ax
    O:>
    az
    1
    2-r
    15.
    (a) (i)
    By
    changi
    ng
    the
    or<l
    er
    of
    mtegranon
    evaluate
    J J xy
    dydx.
    (8)
    0
    .,
    :
    (ii
    )
    By
    changing
    to
    polar
    coordmatcs,
    evaluate
    ff
    e (,• ·
    ,')
    dxdy
    .
    (8)
    0 0
    Or
    (b) (i)
    Evaluate
    fJ
    xy
    dxdy
    over
    the
    positive
    quadrant
    of
    the
    circle
    (8)
    (ii
    )
    Evaluate
    HJ
    (
    dzdydx
    r .
    where
    V
    is
    the
    re
    gion
    bounded
    by
    v
    x+y+z.+l
    x = 0 , y =
    0.
    z = 0
    and
    .Y
    + y + z =
    l.
    (8)
    3
    37001
    Downloaded from: annauniversityedu.blogspot.com

    Page 3

  • ---
    Hcg. No.
    Qu
    est
    ion
    Pap
    er
    Code:
    6077-1
    ll.E./13.Tcch.
    DEGREE
    EXAMINATION, NOVEMBER/DECEMBER 2016.
    Seco
    nd
    Semester
    Civil Engmccr111g
    MA
    2161/MA 22/080030004
    -MATHEMATICS-II
    (Common
    to
    nil
    Branches)
    (Regulations
    2008)
    Tim
    e :
    'l'hree
    hours
    Maximum
    :
    100
    mark
    s
    Answer
    ALL
    questions
    .
    PART
    A - (10 x 2 =
    20
    ma
    r
    ks)
    J . T ,nd l
    lu
    "p
    nrt
    1
    culnrintegr.1l
    of
    (D-
    2)
    2
    -=
    e
    2
    '
    sin
    2
    x.
    2,
    Su
    lv
    e.
    (D',
    1
    )y
    = 0
    3.
    Find
    the
    unit
    vector
    normal
    to
    the
    surface
    x
    2
    +
    xy
    + y
    2
    +
    xyz
    at
    the
    point
    (1,
    - 2,1).
    ,J,
    5.
    G.
    7.
    8.
    9.
    10
    .
    Pr
    o
    ve
    thnt
    ft
    =
    (2x
    + y
    z)i
    ;1-
    (4y
    +
    zx)]
    -
    (6z
    - x
    y)l~
    is
    solenoidal.
    Find
    the
    constants
    a,b
    and
    c
    if
    /(z)
    = x +
    ay
    +
    i(bx
    +
    cy)
    is
    analytic.
    find
    the
    fixed
    points
    of
    the
    tr
    ansformation
    w = - z +
    1
    .
    z+l
    Evaluate
    2
    /.
    dz
    1
    ,.
    2
    z
    -7z
    +
    l2
    Find
    the
    re
    s
    idue
    of
    the
    function
    ,
    4
    at
    a
    simple
    pole.
    z
    (z
    -3)
    Us
    ing
    the
    initial
    value
    theorem,
    find
    Lt
    sL(f(t)) for
    the
    function
    /(t)
    = e-•
    cost.
    "'
    Downloaded from: annauniversityedu.blogspot.com

    Page 4

  • l'AltT
    B - (r,
    ~
    JG
    ::
    f:!O
    mnrk~J
    I I. (n)
    (1)
    Solv, ( IJl ,1
    /y
    x III x
    (8)
    /11)
    (b) (IJ
    (11)
    Solv,
    ,J',
    rly
    Jx
    ' rlx
    r/x
    Solve,
    dt
    - 2x -
    ly
    (BJ
    Or
    (8/
    (
    8)
    12
    . (a)
    (1)
    Verify Stoke's
    th
    eorem for fr
    ..
    (:x
    2
    ...
    y
    2
    )
    l -
    2:x:;
    j
    taken
    ar
    oun
    d
    the
    re
    c
    tan
    gle bounded by tho
    Im
    es
    x =
    =:
    a,
    y =
    0,:;
    = b . (1
    0/
    (1i)
    Fmd
    the
    angle between
    the
    su
    rfaces x
    2
    -
    :l
    - z
    2
    = 9
    and
    z = x
    2
    ..
    y
    2
    - 3 ot
    th
    e
    point
    (2, - 1, 2
    ).
    (6)
    Or
    (b)
    (1)
    Find
    the
    values of
    the
    constants
    a,b,c so
    that
    F "'(axy + b z
    3
    )i
    +
    {3:x
    2
    -
    cz
    )J
    {3.xz
    2
    - y
    ~
    may
    be
    irr
    otat
    1onaL For
    th
    ese
    value
    s of
    a,b,c,
    find
    the
    sca
    lar
    potential
    of
    f:.
    (8)
    (ii)
    Using
    Gauss
    divergence theorem
    evaluate
    JJ
    f:.n.ds where
    s
    F =
    (x
    2
    -
    yz
    )l
    +
    (l
    -z x
    )J
    +
    {z
    2
    -x
    y
    }k
    and
    S
    1s
    the
    s
    urfa
    ce formed
    by
    :x
    =
    0,
    :x
    = 1, y = 0, y = 2, z = 0 a
    nd
    z = 3 . (8)
    13
    . (a) (i)
    Pr
    ove
    that
    u = x
    3
    -3
    :xy
    2
    +
    3x
    2
    -3y
    2
    -1
    is
    harmonic
    and
    also find
    th
    e
    analytic
    function
    /(z)
    = u
    ...
    iv . (8)
    (ii)
    Under
    the
    transformation
    w =
    .!.,
    find
    the
    image
    of
    lz
    -2 1 = 2 . (8)
    z
    Or
    (b) (
    i)
    Find
    the
    bilinear
    mapping
    which
    map
    s
    -1,0,
    1
    of
    the
    z-
    plane
    onto
    -1,
    - i, l
    of
    the
    w -
    plane.
    (8)
    (ii)
    Show
    that
    an
    analytic
    function
    with
    constant
    modulus
    is
    constant.
    (8)
    2
    60771
    Downloaded from: annauniversityedu.blogspot.com

    Page 5

  • 14. (u) (i)_ ~x
    dO
    Usmg
    the
    method
    of
    contour
    inte<>ration
    evaluate
    J
    ----
    . (8)
    0
    0
    5T4mnB
    (ii)
    F
    8z+3
    'ind
    the
    Laurent's
    series
    expansion
    of
    ..,......-.------
    - -
    in
    the
    (z+
    5)(z -
    2)(z
    -3
    )
    region 1 <
    lz+
    s1
    < 8 .
    (8)
    Or
    (b)
    (i)
    Using
    the
    method
    of
    contour
    integration,
    evaluate
    "'J x2
    2
    dx.
    0
    (x
    +
    1)
    (x·
    +
    4)
    (
    8)
    (ii)
    E\·aluate
    J = +
    1
    dz.
    where C
    is
    the circle !z + 1
    ..-
    ij =
    2,
    using
    +
    2z
    + 4
    <
    Cauchy's
    integral
    formula.
    15. (a)
    (i)
    Find
    the
    Laplace
    transform
    of
    t
    2
    e
    2
    '
    sin t .
    (ii)
    Using convolution theorem find
    1
    [ (
    1
    j].
    +
    2s
    +o
    Or
    (8)
    (8)
    (b)
    (i)
    Find
    the
    Laplace
    transform
    of
    the
    half-wave
    rectifier given
    by
    1
    asinwt
    f(t)
    =
    0
    ;r
    ,O<t<-
    {
    2
    )
    ,r
    ~
    and
    t + ; =
    {(t).
    ,-<t<-
    w w
    (ii)
    Solve using Laplace transforms:
    d
    2
    y
    dy
    dx
    2
    + 4
    dx
    +
    4y
    =
    te·
    1
    ,y(O) = O,y'(O) =
    1.
    3
    (8)
    (8)
    60
    771
    Downloaded from: annauniversityedu.blogspot.com

    Page 6

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.