CONCEPT RECAPITULATION TEST - II [CONCEPT RECAPITULATION TEST - II]
other
13 Pages
ARK
Contributed by
Alex Ratan Khare
Loading
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com1ANSWERS, HINTS & SOLUTIONSCRT–II(Main)Q. No. PHYSICS CHEMISTRY MATHEMATICS1.B C C2.A B A3.A C C4.A C B5.B B B6.C B C7.C D A8.C B D9.A B D10.C A A11.D B B12.A C A13.B D A14.C A B15.A C C16.D C D17.D B D18.A C C19.B C B20.A B C21.B D C22.B C D23.D A A24.B C D25.A B B26.A D C27.D A D28.B A D29.D C A30.C B AALL INDIATEST SERIESFIITJEEJEE(Main)-2014From Classroom/Integrated School Programs 7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Studentsfrom Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
Page 1
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com2PPhhyyssiiccss PART – ISECTION – A1. Net force on the system isF = 3 mg sin k3 mg cos acm=k3mgsin 3 mgcos3m = 4 m/s22. Consider an arbitrary moment when the wedge has travelled a distance xinto region II.The area of the top surface inside the region II = ax sec Force on it = ax sec P = ax sec [P =1]Component of the force opposite velocity = ax sec . sin = ax tan .If it further moves by dx then the work done = ax tan dxb2001mv atan xdx2 v0=abhMhx3. SA= v0t 2A1gt2SB= v0t 2B1gt2SA SB= L t = B A2 Lg 4. N/N0= et5. First law of motion.6. For vertical oscillation time periodT1= 2mk. . . (1)For the transverse oscillation period of simple pendulum T2= 2gBut 2T1= T2 k =4mg8. 23GMm 1mv 02R 2 v =3gR9. Tension in the string T = mg FB= 3vg vg = 2vgBalancing torquekxR/2 = TR x = 2T/k = 4vg/k
Page 2
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com310. II and IV quadrant field will be added.11.6P41600 x 10v4 x 10 = 4 m/s6Q41600 x 10v2 x 10 = 8 m/s 2 2A B A Q P1v v gh2 h = 3.6 mm12.mg T ma ----- (1)2rmr aT x2 r----- (2)From (1) and (2),2g mga & T mg3 3 13 13. J1x 0.1 = 5 x IJ1= 50 mAI = 50 + 5 = 55 mAS10.5BCD0.10.2 0.35 mAIIJ15 mA16. Let Vxand Vybe components of velocity. At contact point Aand B,the velocity along normal should be same.o o oy xucos60 V cos30 V cos60 …. (1)x2 2x yv 2uv V V 2uu60o60o30oVyVx19.21qEy mv2Magnetic force will not do any work.20. Conceptual.21. Now downward force on the rightblock is more.mgTTmg22. IC= I0+ M(OC)2= I0+ M(OB2+ BC2) = IB+ M(BC)223. Coulombic force between them remains same.
Page 3
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com424. Circuit is forming a wheatstone bridge Req= 2RFor maximum power transfer 2R = r.RRRRR4Rr25. =342B =2d 3 dBdt 4 dt i =23R 4R26. C =0 0RT 5RTM 3Mdx = C. dt =L 000T T5RT x dt3M L L 02L 3Mt5R( T T )A BTLT0Lxdx27. Equivalent circuit isT T90 V 202R R V = 500CPRRTV2RTRT(900C) (300C)28. Leftward Force =2I PC t29. Conceptual, torque of pseudo force.30. Effective length = (r2+ r1)
Page 4
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com5CChheemmiissttrryy PART – IISECTION – A1.1 1 2 2P V P V 71 2 152 1 2P V32P V 75 752 2 128 .2. 4 3NH Cl NH g HClt 0 0.20 0 0At eqm. 0.2 x x x32P NH HCl PK P P P P K =0.36 0.6 atm .NH3formedPV 0.6 10RT 0.0821 600 = 0.122 mole = moles of NH4Cl decomposed.Moles of NH4Cl left = 0.2 – 0.122 = 0.078.7. 2 4 7 2 4 2 4 2 4 7XNa B O H SO Na SO H B O 2 4 7 2 3 3H B O 5H O 4H BO 3 3 2 3 22H BO B O 3H O 2 3 2XB O 6Na 2B 3Na O 8.o o oG H T S o2H O H OH H 13.7 kcal o ooH G 13.7 19.14ST 298 = 0.1102 kcal mol-1= 110.2 cal k-1mol-19. In bcc,3 ar4Edge length = aEdge length not covered by atom = a – 2r3 2 3a a a2 3 percentage fraction not covered =2 3a2100 0.134 100a = 13.4%
Page 5
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com610.331Al 3e Al KAl 33Al OH Al 3OH pH = 14, [H+] = 1 × 10-14(OH) = 1 MKsp= [Al3+][1]33 33Al 1 10 M o30.0591 1E E log3Al 330.0591 0.05911.66 log10 1.66 333 3 = - 2.31 V11.2Cl4hCHMgClH3C2Br /hBrKCNCN3H OCOOHCH3ClCH3CH2CH313. 21 1 2 231 2M V M VCO Hn n 11M 504 49.35M 1.9741 2 Bx d 10 x 1.25 10M 1.974m 106 x 16.7 15. H2O is weak field ligand while CNis a strong field ligand. In complex (i), the distribution is3 22g gt e,i.e. all electrons are unpaired while in (ii) complex, the distribution is5 02g gt e, i.e. two t2gorbitals arepaired while one is unpaired.16.COClCCOClOCl4LiAlHOHOHOH2 4Conc. H SO17.3H OOOH OHOH(A)O(B)Aldehyde and ketone can be differentiated by Fehling’s solution.
Page 6
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com718.HOHOOH2+OOOOH19. The rate can be compared by stability of carbocation.CCOCH3(I)(II)CNH(III)N has more tendency to donate electron than O.21. H = E + PV H = E + nRTH2= E2+ nRT2H1= E1+ nRT1(H2– H1) = (E2– E1) + nR(T2– T1)H E nR T 4 8.314 50 = 1660 J22.22H S 2H S 2 2CdS Cd S CdS2 2spK Cd S 27 14 28 10 1 10 S 2 13S 8 10 M 222H SK H S 213 22H 8 10 1 10 210H 1.25 10 [H+] = 1.11 × 10-5pH 5 .23. 2 4 2N O g 2NO g1 01 x 2xTotal moles = 1 – x + 2x = 1 + xSince PV = nRT, V n% of 22xNO 100 501 x
Page 7
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com81x3 D Theoretical VD1 xd Experimental VD 4 46 46 3d 34.53 d 4 28. SpeciesNONOCNCNBond order 2 3 3 2Bond order1BondlengthBondlength ofNO> CN+due to greater number of antibonding electrons.29.f fT i K m 86 0.001 0.0054 i 1.86 0.001 0.0054i 2.9 31.86 0.001 i.e. there are 3 ions in the solution of complex.So, [Pt(NH3)4Cl2]Cl2is the correct choice.MMaatthheemmaattiiccss PART – IIISECTION – A1.2 22 3a 4b c 3 4a 3b c10a b 2 218a 17b 5c10a b 2 218 17a b c5 52a b 2. b2= 4 2 = 8,2ae 40a2e2= 10 = b2+ a2 a2= 2Centre = (1, 5)Equation of transverse axis x – 3y + 14 = 0Equation of conjugate axis 3x + y – 8 = 0Equation of hyperbola = 2 23x y 8 x 3y 14201 4 3. 4 2x 14x 25f x5x 2x =2 2225x x 14x5x 2x
Page 8
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com9=225x x 4x5x 2x =25x x 2x x2– 2x – 5 = 02 4 20x2 =2 2 62=1 64. 6 places can be selected in9C6ways and 6 can be placed only at 5 places, except the right mostof other 6 selected. Remaining numbers i.e. 7, 8, 9 in 3! waysHence number of ways =96C 5 3! 5. z = 18 + 26i,r 10 10 ,13tan9 ,0,2 0,3 6 1/ 31/ 3z 10 10 cos isin 10 cos isin3 3 323t ttan1 3t , t tan3 1tan3 31/ 3z= 3 + i, a = 3, b = 16. Let parabola is y2= 4ax = at1t2, = a(t1+ t2), Q = (at1t3, a(t1+ t3)), R (at2t3, a(t2+ t3))Let T = (h, k) then h = 3 31 2at tt t2 2 2k = a(t1+ t2) + 2at3=4ah The locus id 4ax – 2y + 2= 07. We observe that = because of perpendicularity of two secantNow SOR + SOQ – SOP = ( = ) (arg(z3) – arg(z) + (arg(z2) – arg(z)) – (arg(z1) – arg(z)) = arg(z3) + arg(z2) = + arg(z1) + arg(z)= arg(z2z3) = + arg(zz1) z2z3= –zz1 zz1+ z2z3= 0R(z3)Q(z2)P(z1)S(z)O(0)8. 11n1nn 11 tan tC dtnsin tL =112n1n nnn 1tan tlim n C lim n dtsin t ( 0)
Page 9
- AITS-CRT-II-PCM (Sol)-JEE (Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com10L = 111nn 1ntan tdtsin tlim1n(Applying Leibniz rule)9. We have to find non negative integral solution of equation 2x + y + z = 21Note that x can take a maximum value of 10 and a minimum value of 0.We rearrange equation so that we get an integer equation with y and z as variables, x as aconstanty + z = 21 – 2xThe number of non negative integer solution is21 – 2x + 2 – 1C1=22 – 2xC1= 22 – 2xWe now add the number of solutions so obtained for all the possible values of x.The total number of solution is therefore 10x 022 2x 132 10. As a > 0 R.H.S. > 0 hence x > 0Applying AM GM we get,21x1xxx1a2ax1axL.H.S. 2x1x21aButx1x 2 x > 0 2x1x21a 2 a a 1 L.H.S. 2 a and equality holds if x = 1.11. The required probability is12251212 132 251 512 2C14C11p50C C14C C 12. 213x 2 3 y3 = latus rectum = 3Other conic is 222 2y 2x 31772 which an ellipse isLatus rectum =22b 2 49 7a 4 7 2 Positive difference7 132 2 13. B = adj (2A) |B| = |2A|n – 11024 = 4n – 12n(n – 1)210 n n 22 2 n = 3
Page 10
Download this file to view remaining 3 pages
Related documents:
- Management (Paper II) 2017 Question Paper - Question Paper
- Lyrics - Complementary Course VII MCQs - MCQ
- Zoology model question paper 2 - Question Paper
- Sequences & Series (Solved MCQs and Notes) - Notes
- EXIM TRADE - INTERNATIONAL BUSINESS - Notes
- Public Administration (Paper II) 2016 Question Paper - Question Paper
- QP IFSM-23 MECHANICAL ENGINEERING PAPER-II - MCQ
- CONCEPT RECAPITULATION TEST - I Paper 1 [ANSWERS, HINTS & SOLUTIONS CRT–I] 2014
- GE6075 Professional Ethics in Engineering - Notes
- MG6851 Principles of Management QBank - Question Bank
- Management Control System solved MCQs - MCQ
- Public Administration (Paper II) 2015 Question Paper - Question Paper
- Analytical Reasoning - Question Bank
- GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY Manual - Notes
- Recent Trends in IT Solved MCQs - MCQ
- Psychology (Paper I) 2015 Question Paper - Question Paper
- Mizo Fiction II - MCQ
- Banking and Insurance Services - Notes
- English (Paper I) 2017 Question Paper - Question Paper
- NIRBHAYA FUND - Notes