CONCEPT RECAPITULATION TEST - II [CONCEPT RECAPITULATION TEST - II]

other 13 Pages
ARK

Contributed by

Alex Ratan Khare
Loading
  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    1
    ANSWERS, HINTS & SOLUTIONS
    CRT–II
    (Main)
    Q. No. PHYSICS CHEMISTRY MATHEMATICS
    1.
    B C C
    2.
    A B A
    3.
    A C C
    4.
    A C B
    5.
    B B B
    6.
    C B C
    7.
    C D A
    8.
    C B D
    9.
    A B D
    10.
    C A A
    11.
    D B B
    12.
    A C A
    13.
    B D A
    14.
    C A B
    15.
    A C C
    16.
    D C D
    17.
    D B D
    18.
    A C C
    19.
    B C B
    20.
    A B C
    21.
    B D C
    22.
    B C D
    23.
    D A A
    24.
    B C D
    25.
    A B B
    26.
    A D C
    27.
    D A D
    28.
    B A D
    29.
    D C A
    30.
    C B A
    ALL INDIA
    TEST SERIES
    FIITJEE
    JEE(Main)-2014
    From Classroom/Integrated School Programs 7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students
    from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013

    Page 1

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    2
    P
    P
    h
    h
    y
    y
    s
    s
    i
    i
    c
    c
    s
    s PART – I
    SECTION – A
    1. Net force on the system is
    F = 3 mg sin
    k
    3 mg cos
    a
    cm
    =
    k
    3mgsin 3 mgcos
    3m
    = 4 m/s
    2
    2. Consider an arbitrary moment when the wedge has travelled a distance x
    into region II.
    The area of the top surface inside the region II = ax sec
    Force on it = ax sec P = ax sec [P =1]
    Component of the force opposite velocity = ax sec . sin = ax tan .
    If it further moves by dx then the work done = ax tan dx
    b
    2
    0
    0
    1
    2
    v
    0
    =
    abh
    M
    h
    x
    3. S
    A
    = v
    0
    t
    2
    A
    1
    gt
    2
    S
    B
    = v
    0
    t
    2
    B
    1
    gt
    2
    S
    A
    S
    B
    = L t =
    B A
    2 L
    g
    4. N/N
    0
    = e
    
    t
    5. First law of motion.
    6. For vertical oscillation time period
    T
    1
    = 2
    m
    k
    . . . (1)
    For the transverse oscillation period of simple pendulum T
    2
    = 2
    g
    But 2T
    1
    = T
    2
    k =
    4mg
    8.
    2
    3GMm 1
    mv 0
    2R 2
    v =
    3gR
    9. Tension in the string T = mg F
    B
    = 3vg vg = 2vg
    Balancing torque
    kxR/2 = TR
    x = 2T/k = 4vg/k

    Page 2

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    3
    10. II and IV quadrant field will be added.
    11.
    6
    P
    4
    1600 x 10
    v
    4 x 10
    = 4 m/s
    6
    Q
    4
    1600 x 10
    v
    2 x 10
    = 8 m/s
    2 2
    A B A Q P
    1
    v v gh
    2
    h = 3.6 mm
    12.
    mg T ma
    ----- (1)
    2
    r
    mr a
    T x
    2 r
    ----- (2)
    From (1) and (2),
    2g mg
    a & T mg
    3 3
    1
    3
    13. J
    1
    x 0.1 = 5 x I
    J
    1
    = 50 mA
    I = 50 + 5 = 55 mA
    S
    1
    0.5
    B
    C
    D
    0.1
    0.2 0.3
    5 mA
    I
    I
    J
    1
    5 mA
    16. Let V
    x
    and V
    y
    be components of velocity. At contact point A
    and B,
    the velocity along normal should be same.
    o o o
    y x
    ucos60 V cos30 V cos60
    …. (1)
    x
    2 2
    x y
    v 2u
    v V V
    2u
    u
    60
    o
    60
    o
    30
    o
    V
    y
    V
    x
    19.
    2
    1
    qEy mv
    2
    Magnetic force will not do any work.
    20. Conceptual.
    21. Now downward force on the right
    block is more.
    mg
    T
    T
    mg
    22. I
    C
    = I
    0
    + M(OC)
    2
    = I
    0
    + M(OB
    2
    + BC
    2
    ) = I
    B
    + M(BC)
    2
    23. Coulombic force between them remains same.

    Page 3

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    4
    24. Circuit is forming a wheatstone bridge R
    eq
    = 2R
    For maximum power transfer 2R = r.
    R
    R
    R
    R
    R
    4
    R
    r
    25. =
    3
    4
    2
    B
    =
    2
    d 3 dB
    dt 4 dt
    i =
    2
    3
    R 4R
    26. C =
    0 0
    RT 5RT
    M 3M
    dx = C. dt =
    L 0
    0
    0
    T T
    5R
    T x dt
    3M L
    L 0
    2L 3M
    t
    5R
    ( T T )
    A B
    T
    L
    T
    0
    L
    x
    dx
    27. Equivalent circuit is
    T T
    90 V 20
    2R R
    V = 50
    0
    C
    P
    R
    R
    T
    V
    2R
    T
    R
    T
    (90
    0
    C) (30
    0
    C)
    28. Leftward Force =
    2I P
    C t
    29. Conceptual, torque of pseudo force.
    30. Effective length = (r
    2
    + r
    1
    )

    Page 4

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    5
    C
    C
    h
    h
    e
    e
    m
    m
    i
    i
    s
    s
    t
    t
    r
    r
    y
    y PART – II
    SECTION – A
    1.
    1 1 2 2
    P V P V
    7
    1 2 1
    5
    2 1 2
    P V
    32
    P V
    7
    5 7
    5
    2 2 128
    .
    2.
    4 3
    NH Cl NH g HCl
    t 0 0.20 0 0
    At eqm. 0.2 x x x
    3
    2
    P NH HCl P
    K P P P P K
    =
    0.36 0.6 atm
    .
    NH
    3
    formed
    PV 0.6 10
    RT 0.0821 600
    = 0.122 mole = moles of NH
    4
    Cl decomposed.
    Moles of NH
    4
    Cl left = 0.2 – 0.122 = 0.078.
    7.
    2 4 7 2 4 2 4 2 4 7
    X
    Na B O H SO Na SO H B O
    
    2 4 7 2 3 3
    H B O 5H O 4H BO
    
    3 3 2 3 2
    2H BO B O 3H O
    
    2 3 2
    X
    B O 6Na 2B 3Na O
    
    8.
    o o o
    G H T S
    o
    2
    H O H OH H 13.7 kcal
    o o
    o
    H G 13.7 19.14
    S
    T 298
    = 0.1102 kcal mol
    -1
    = 110.2 cal k
    -1
    mol
    -1
    9. In bcc,
    3 a
    r
    4
    Edge length = a
    Edge length not covered by atom = a – 2r
    3 2 3
    a a a
    2 3
    percentage fraction not covered =
    2 3
    a
    2
    100 0.134 100
    a
    = 13.4%

    Page 5

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    6
    10.
    3
    3
    1
    Al 3e Al K
    Al
    
    3
    3
    Al OH Al 3OH
    pH = 14, [H
    +
    ] = 1 × 10
    -14
    (OH
    ) = 1 M
    K
    sp
    = [Al
    3+
    ][1]
    3
    3 33
    Al 1 10 M
    o
    3
    0.0591 1
    E E log
    3
    Al
    33
    0.0591 0.0591
    1.66 log10 1.66 33
    3 3
    = - 2.31 V
    11.
    2
    Cl
    4
    h
    CH
    
    
    MgClH
    3
    C
    2
    Br /h
    
    Br
    KCN
    
    C
    N
    3
    H O
    
    COOH
    CH
    3
    Cl
    CH
    3
    CH
    2
    CH
    3
    13.
    2
    1 1 2 2
    3
    1 2
    M V M V
    CO H
    n n
    1
    1
    M 50
    4 49.35
    M 1.974
    1 2
    B
    x d 10 x 1.25 10
    M 1.974
    m 106
    x 16.7
    15. H
    2
    O is weak field ligand while CN
    is a strong field ligand. In complex (i), the distribution is
    3 2
    2g g
    t e
    ,
    i.e. all electrons are unpaired while in (ii) complex, the distribution is
    5 0
    2g g
    t e
    , i.e. two t
    2g
    orbitals are
    paired while one is unpaired.
    16.
    C
    O
    Cl
    C
    C
    O
    Cl
    O
    Cl
    4
    LiAlH
    
    OH
    OH
    OH
    2 4
    Conc. H SO
    
    17.
    3
    H O
    
    O
    OH
    OH
    O
    H
    (A)
    O
    (B)
    Aldehyde and ketone can be differentiated by Fehling’s solution.

    Page 6

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    7
    18.
    H
    
    OH
    O
    OH
    2
    +
    O
    
    O
    
    O
    OH
    19. The rate can be compared by stability of carbocation.
    C
    C
    OCH
    3
    (I)
    (II)
    C
    NH
    (III)
    N has more tendency to donate electron than O.
    21. H = E + PV H = E + nRT
    H
    2
    = E
    2
    + nRT
    2
    H
    1
    = E
    1
    + nRT
    1
    (H
    2
    – H
    1
    ) = (E
    2
    – E
    1
    ) + nR(T
    2
    – T
    1
    )
    H E nR T 4 8.314 50
    = 1660 J
    22.
    2
    2
    H S 2H S
    2 2
    CdS Cd S
    CdS
    2 2
    sp
    K Cd S
    
    27 14 2
    8 10 1 10 S
    2 13
    S 8 10 M
    2
    2
    2
    H S
    K H S
    2
    13 22
    H 8 10 1 10
    2
    10
    H 1.25 10
    [H
    +
    ] = 1.11 × 10
    -5
    pH 5
    .
    23.
    2 4 2
    N O g 2NO g
    1 0
    1 x 2x
    Total moles = 1 – x + 2x = 1 + x
    Since PV = nRT, V n
    % of
    2
    2x
    NO 100 50
    1 x

    Page 7

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    8
    1
    x
    3
    D Theoretical VD
    1 x
    d Experimental VD
    4 46 46 3
    d 34.5
    3 d 4
    28. Species
    NO
    NO
    CN
    CN
    Bond order 2 3 3 2
    Bond order
    1
    Bondlength
    Bondlength of
    NO
    > CN
    +
    due to greater number of antibonding electrons.
    29.
    f f
    T i K m 86 0.001
    0.0054 i 1.86 0.001
    0.0054
    i 2.9 3
    1.86 0.001
    i.e. there are 3 ions in the solution of complex.
    So, [Pt(NH
    3
    )
    4
    Cl
    2
    ]Cl
    2
    is the correct choice.
    M
    M
    a
    a
    t
    t
    h
    h
    e
    e
    m
    m
    a
    a
    t
    t
    i
    i
    c
    c
    s
    s PART – III
    SECTION – A
    1.
    2 2
    2 3a 4b c 3 4a 3b c
    10
    a b
    2 2
    18a 17b 5c
    10
    a b
    2 2
    18 17
    a b c
    5 5
    2
    a b
    2. b
    2
    = 4 2 = 8,
    2ae 40
    a
    2
    e
    2
    = 10 = b
    2
    + a
    2
    a
    2
    = 2
    Centre = (1, 5)
    Equation of transverse axis x – 3y + 14 = 0
    Equation of conjugate axis 3x + y 8 = 0
    Equation of hyperbola =
    2 2
    3x y 8 x 3y 14
    20
    1 4
    3.
    4 2
    x 14x 25
    f x
    5
    x 2
    x
    =
    2 2
    2
    25
    x x 14
    x
    5
    x 2
    x

    Page 8

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    9
    =
    2
    2
    5
    x x 4
    x
    5
    x 2
    x
    =
    2
    5
    x x 2
    x
    x
    2
    – 2x – 5 = 0
    2 4 20
    x
    2
    =
    2 2 6
    2
    =
    1 6
    4. 6 places can be selected in
    9
    C
    6
    ways and 6 can be placed only at 5 places, except the right most
    of other 6 selected. Remaining numbers i.e. 7, 8, 9 in 3! ways
    Hence number of ways =
    9
    6
    C 5 3!
    5. z = 18 + 26i,
    r 10 10
    ,
    13
    tan
    9
    ,
    0,
    2
    0,
    3 6
    1/ 3
    1/ 3
    z 10 10 cos isin 10 cos isin
    3 3
    3
    2
    3t t
    tan
    1 3t
    , t tan
    3
    1
    tan
    3 3
    1/ 3
    z
    = 3 + i, a = 3, b = 1
    6. Let parabola is y
    2
    = 4ax
    = at
    1
    t
    2
    , = a(t
    1
    + t
    2
    ), Q = (at
    1
    t
    3
    , a(t
    1
    + t
    3
    )), R (at
    2
    t
    3
    , a(t
    2
    + t
    3
    ))
    Let T = (h, k) then h =
    3 3
    1 2
    at t
    t t
    2 2
    2k = a(t
    1
    + t
    2
    ) + 2at
    3
    =
    4ah
    The locus id 4ax – 2y +
    2
    = 0
    7. We observe that =
    because of perpendicularity of two secant
    Now SOR + SOQ – SOP = ( = )
    (arg(z
    3
    ) arg(z) + (arg(z
    2
    ) arg(z)) (arg(z
    1
    ) arg(z)) =
    arg(z
    3
    ) + arg(z
    2
    ) = + arg(z
    1
    ) + arg(z)
    = arg(z
    2
    z
    3
    ) = + arg(zz
    1
    )
    z
    2
    z
    3
    = –zz
    1
    zz
    1
    + z
    2
    z
    3
    = 0
    R(z
    3
    )
    Q(z
    2
    )
    P(z
    1
    )
    S(z)
    O(0)
    8.
    1
    1
    n
    1
    n
    n 1
    1 tan t
    C dt
    n
    sin t
    L =
    1
    1
    2
    n
    1
    n n
    n
    n 1
    tan t
    lim n C lim n dt
    sin t
    
    ( 0)

    Page 9

  • AITS-CRT-II-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    10
    L =
    1
    1
    1
    n
    n 1
    n
    tan t
    dt
    sin t
    lim
    1
    n
    (Applying Leibniz rule)
    9. We have to find non negative integral solution of equation 2x + y + z = 21
    Note that x can take a maximum value of 10 and a minimum value of 0.
    We rearrange equation so that we get an integer equation with y and z as variables, x as a
    constant
    y + z = 21 – 2x
    The number of non negative integer solution is
    21 – 2x + 2 – 1
    C
    1
    =
    22 – 2x
    C
    1
    = 22 – 2x
    We now add the number of solutions so obtained for all the possible values of x.
    The total number of solution is therefore
    10
    x 0
    22 2x 132
    10. As a > 0 R.H.S. > 0 hence x > 0
    Applying AM GM we get,
    2
    1
    x
    1
    x
    x
    x
    1
    a
    2
    a
    x
    1
    ax
    L.H.S. 2
    x
    1
    x
    2
    1
    a
    But
    x
    1
    x 2 x > 0
    2
    x
    1
    x
    2
    1
    a 2 a a 1 L.H.S. 2 a and equality holds if x = 1.
    11. The required probability is
    12
    2
    51
    2
    12 13
    2 2
    51 51
    2 2
    C
    1
    4
    C
    11
    p
    50
    C C
    1
    4
    C C
    12.
    2
    13
    x 2 3 y
    3
    = latus rectum = 3
    Other conic is
    2
    2
    2 2
    y 2
    x 3
    1
    7
    7
    2
    which an ellipse is
    Latus rectum =
    2
    2b 2 49 7
    a 4 7 2
    Positive difference
    7 1
    3
    2 2
    13. B = adj (2A) |B| = |2A|
    n – 1
    1024 = 4
    n – 1
    2
    n(n – 1)
    2
    10 n n 2
    2 2
    n = 3

    Page 10

Download this file to view remaining 3 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.