Loading
- 92Unit – 11 – Circle and Conic SectionMCQ(1) The number of integral values of m for which x2+ y2(1 – m)x + my + 5 = 0 is the equationof a circle whose radius cannot exceed 5, is(a) 20 (b) 18 (c) 8 (d) 24(2) The circle x2+ y2– 6x – 10y + ? = 0 does not touch or intersect the coordinate axes andpoint (1, 4) is inside the circle, then the range of the values of ? is(a) (0, 25) (b) (5, 29] (c) (25, 29) (d) (9, 25)(3) Equation of smallest circle touching these four circle (x ? 1)2+ (y ? 1)2= 1 is(a) x2+ y2= 3 –2(b) x2+ y2= 5 – 22(c) x2+ y2= 6 – 22(d) x2+ y2= 3 – 22(4) If two circle (x – 1)2+ (y – 3)2= a2and x2+ y2– 8x + 2y + 8 = 0 intersect in two distinctpoints, then(a) 2 < a < 8 (b) a > 2 (c) a < 2 (d) a = 2(5) If the tangents are drawn to the circle x2+ y2= 12 at the point where it meets the circlex2+ y2– 5x + 3y – 2 = 0, then the point of intersection of these tangent is(a) (6, – 6) (b)6185,FHIK(c)6185,?FHIK(d)??FHIK6185,(6) Two tangents to the circle x2+ y2= 4 at the points A and B meet at P(–4, 0). The area of thequadrilateral PAOB, where O is the origin is(a)4 3(b) 4 (c)6 2(d)2 3(7) The radius of the circle passing through the points (5, 2), (5, –2) and (1, 2) is(a)2 5(b) 32(c) 52(d) 22(8) The line xsin? – ycos? = k touches the circle x2+ y2= k2then(a)?? ?? ?LNMOQP2 2,(b) ? ? [0, ? ] (c) ? ? [–? , ? ] (d) ? is any angle(9) One of the diameters of the circle circumscribing the rectangle ABCD is x – 4y + 7 = 0. IfA and B are points (–3, 4) and (5, 4) respectively, then the area of the rectangle is(a) 32 sq. units (b) 16 sq. units (c) 64 sq. units (d) 8 sq. units(10) Let C be the centre of the circle x2+ y2– 2x – 4y – 20 = 0. If the tangents at the point A(1, 7)
Page 1
- 93and B(4, –2) on the circle meet at piont D. Then area of the quadrilateral ABCD is(a) 150 sq. units (b) 100 sq. units (c) 75 sq. units (d) 50 sq. units(11) The circle x2+ y2– 4x – 4y + 4 = 0 is inscribed in a triangle which has two of its sides alongthe co–ordinates axes. The locus of the circumcentre of the triangle is x + y – xy + kx y2 20? ?then k =(a) 0 (b) ? 1 (c) 2 (d) ? 3(12) A square is inscribed in the circle x2+ y2– 2x + 4y + 3 = 0. Its sides are parallel to the co–ordinate axes. Then one vertex of the square is(a) 1 2 2? ?,ch(b) 1 2 2? ?,ch(c) (1, -2+2) (d) 1 2 2 2? ? ?,ch(13) If the equationm x y( ) ( )????132412 2represents a circle then m =(a) 0 (b)34(c)?34(d) 1(14) The circle whose equation is x2+ y2– 2? x – ? y + ?2= 0(a) passes through origin (b) touches only X–axis(c) touches only Y–axis (d) touches both the axes(15) The line (x + g) cos? + (y + f ) sin? = k touches the circle x2+ y2+ 2gx + 2fy + c = 0 onlyits(a) g2+ f2= c + k2(b) g2+ f2= c2+ k2(c) g2+ f2= c – k2(d) g2+ f2= c2– k2(16) The centre of the circle passing throug (0, 0) and (1, 0) and touching the circle x2+ y2= 9is(a)3212,FHIK(b)1232,FHIK(c)1212,FHIK(d)122, ?FHIK(17) The number of common tangents to the circles x2+ y2= 4 and x2+ y2– 6x – 8y – 24 = 0is(a) 0 (b) 1 (c) 2 (d) None of these(18) The equation of the set of complex number z = x + iy, So that | z – z1| = 5, where z1= 1 + 2i(a) x2+ y2– 2x – 4y – 20 = 0 (b) x2+ y2+ 2x – 4y – 20 = 0(c) x2+ y2– 2x + 4y – 20 = 0 (d) x2+ y2+ 2x + 4y + 20 = 0
Page 2
- 94(19) A circle is given by x2+ (y – 1)2= 1, another circle C touches it externally and also the x–axis, then the locus of its centre is(a) {(x, y) : x2= 4y} ? {(x, y) : y ? 0} (b) {(x, y) : x2+ (y – 1)2= 4} ? {(x, y) : y ? 0}(c) {(x, y) : x2= y} ? {(0, y) : y ? 0} (d) {(x, y) : x2= 4y} ? {(0, y) : y ? 0}(20) Tangent to the circle x2+ y2= 5 at the point (1, –2) also touches the circle x2+ y2– 8x +6y + 20 = 0 then point of contact is(a) (3, 1) (b) (3, –1) (c) (–3, –1) (d) (–3, 1)(21) Four distinct points (1, 0), (0, 1), (0, 0) and (2a, 3a) lie on a circle for(a) only one value of a ? (0, 1) (b) a > 2(c) a < 0 (d) a ? (1, 2)(22) The length of the chord joining the points (2cos? , 2sin? ) and (2cos(? + 60o), 2sin(? + 60o))of the circle x2+ y2= 4 is(a) 2 (b) 4 (c) 8 (d) 16(23) A square is formed by the two points of straight lines x2– 8x + 12 = 0 and y2– 14y + 45= 0. A circle is inscribed in it. The centre of the circle is(a) (6, 5) (B) (5, 6) (c) (7, 4) (d) (4, 7)(24) If one of the diameters of the circle x2+ y2– 2x – 6y + 6 = 0 is a chord to the circle withcentre (2, 1), then the radius of the circle is(a) 3 (b)3(c) 2 (d)2(25) The lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are diameters of a circle of area 154 squareunits then the equation of the circle is(a) x2+ y2+ 2x – 2y – 62 = 0 (b) x2+ y2+ 2x – 2y – 47 = 0(c) x2+ y2– 2x + 2y – 47 = 0 (d) x2+ y2– 2x + 2y – 62 = 0(26) The equation of the common tangent to the curves y2= 8x and xy = –1 is(a) 9x – 3y + 2 = 0 (b) 2x – y + 1 = 0 (c) x – 2y + 8 = 0 (d) x – y + 2 = 0(27) The lengthof the common chord of the parabolas y2= x and x2= y is(a) 1 (b)2(c) 42(d) 22(28) The straight line y = a – x touches the parabola x2= x – y if a =(a) –1 (b) 0 (c) 1 (d) 2
Page 3
- 95(29) If the line x – 1 = 0 is the directrix of the parabola y2– kx + 8 = 0 then one of the valuesof k is(a) 4 (b)18(c)14(d) 8(30) If M is the foot of the perpendicular from a point P on a parabola to its directrix and SPMis an equilateral triangle, where S is the focus, then SP is equal to(a) 8a (b) 2a (c) 3a (d) 4a(31) The chord AB of the parabola y2= 4ax cuts the axis of the parabola at C. If A = (at12, 2at1),B = (at22, 2at2) and AB : AC = 3 : 1 then(a) t2= 2t1(b) t1+ 2t2= 0 (c) t2+ 2t1= 0 (d) t1– 2t2= 0(32) Equation of common tangents of y2= 4bx and x2= 4by is(a) x + y + b = 0 (b) x – y + b = 0 (c) x – y – b = 0 (d) x + y – b = 0(33) Angle between the tangents drawn to y2= 4x, where it is intersected by the line x – y – 1 = 0is equal to(a)?2(b)?3(c)?4(d)?6(34) The angle between the tangents drawn from the point (1, 4) to the parabola y2= 4x is(a)?2(b)?3(c)?4(d)?6(35) The shortest distance between the line x – y + 1 = 0 and the curve x = y2is(a)3 25(b)2 38(c)3 28(d)2 25(36) Let P be the point (1, 0) and Q a point on the locus y2= 8x. The locus of mid–point of PQ is(a) y2+ 4x + 2 = 0 (b) y2– 4x + 2 = 0 (c) x2– 4y + 2 = 0 (d) x2+ 4y + 2 = 0(37) If tangents to the parabola y2= 4ax at the points (at1, 2at1) and (at22, 2at2) intersect on theaxis of the parabola, then(a) t1t2= –1 (b) t1t2= 1 (c) t1= t2(d) t1+ t2= 0(38) The focus of the parabola x2– 8x + 2y + 7 = 0 is(a)? ?FHIK492,(b)012, ?FHIK(c)94,2 (d) (4, 4)(39) The point of intersection of the tangents at the ends of the latus rectum of the parabola y2= 4xis(a) (–1, 0) (b) (1, 0) (c) (0, 0) (d) (0, 1)
Page 4
- 96(40) If the line y = 1 – x touches the curve y2– y + x = 0, then the point of contact is(a) (0, 1) (b) (1, 0) (c) (1, 1) (d)1212,FHIK(41) The line y = c is a tangent to the parabola y2= 4ax if c is equal to(a) a (b) 0 (c) 2a (d) None of these(42) The vertex of the parabola (x – b)2= 4b (y – b) is(a) (b, 0) (b) (0, b) (c) (0, 0) (d) (b, b)(43) The axis of the parabola 9y2– 16x – 12y – 57 = 0 is(a) y = 0 (b) 16x + 61= 0 (c) 3y – 2 = 0 (d) 3y – 61 = 0(44) If P(at2, 2at) be one end of a focal chord of the parabola y2= 4ax, then the length of the chordis(a)a tt?FHIK1(b)a tt?FHIK1(c)a tt?FHIK12(d)a tt?FHIK12(45) The latus rectum of a parabola is a line(a) through the focus (b) parallel to the directrix(c) perpendicular to the axis (d) all of these(46) A tangent to the parabola y2= 9x passes through the point (4, 10). Its slope is(a)34(b)94(c)14(d)13(47) The line y = mx + 1 is a tangent to the parabola y2= 4x if m =(a) 4 (b) 3 (c) 2 (d) 1(48) If a chord of the parabola y2= 4ax, passing through its focus F meets it in P and Q, then1|FP|1|FQ|?=(a)1a(b)2a(c)4a(d)12a(49) The equation of the chord of parabola y2= 8x. Which is bisected at the point (2, –3) is(a) 3x + 4y – 1 = 0 (b) 4x + 3y + 1 = 0 (c) 3x – 4y + 1 = 0 (d) 4x – 3y – 1 = 0(50) If x + y + 1 = 0 touches the parabola y2= ax then a =(a) 8 (b) 6 (c) 4 (d) 2
Page 5
- 97(51) If y1, y2and y3are the ordinates of the vertices of a triangle inscribed in the parabola y2=4ax, then its area is(a)181 2 2 3 3 1ay y y y y y( ) ( ) ( )? ? ?(b)141 2 2 3 3 1ay y y y y y( ) ( ) ( )? ? ?(c)121 2 2 3 3 1ay y y y y y( ) ( ) ( )? ? ?(d)11 2 2 3 3 1ay y y y y y( ) ( ) ( )? ? ?(52) The centre of the ellipse( ) ( )x y x y? ???29 162 2= 1 is(a) (1, 1) (b) (0, 0) (c) (0, 1) (d) (1, 0)(53) Let E be the ellipsex y2 29 41? ? and C be the circle x2+ y2= 9. Let P and Q be the piont(1, 2) and (2, 1) respe. Then(a) P lies inside C but outside E (b) P lies inside both C and E(c) Q lies outside both C and E (d) Q lies inside C but outside E(54) The ellipse x2+ 4y2= 4 is incribed in a rectangle aligned with the co–ordinate axes. Whichin turn is inscribed in an other ellipse that passes through the point (4, 0). Then the equationof the ellipse is(a) 4x2+ 48y2= 48 (b) x2+ 16y2= 12 (c) x2+ 16y2= 16 (d) x2+ 12y2= 16(55) Chords of an ellipse are drawn through the positive end of the minor axis. Then their mid pointlies on(a) a circle (b) a parabola (c) an ellipse (d) a hyperbola(56) The distance from the foci of P(x1, y1) on the ellipsex y2 29 251? ?is(a)4541? y(b)5451? y(c)5451? x(d)4451? y(57) If S and S' are two foci of an ellipse 16x2+ 25y2= 400 and PSQ is a focal chord such thatSP = 16 then S'Q =(a)749(b)549(c)649(d)449
Page 6
- 98(58) Tangents are drawn to the ellipsex y2 29 51? ?at ends of latus recturm line. The area ofquadrilateral so formed is(a)274(b)2755(c) 27 (d)272(59) Let P be a point on the ellipse2 22 21x ya b of eccentricity e. If A, A' are the vertices and S,S' are the foci of an ellipse, then area of ? APA' : area of ? PSS' =(a) e (b) e2(c) e3(d)1e(60) A focus of an ellipse is at the origin. The directrix is the line x – 4 = 0 and eccentricity is12, then the length of semi–major axis is(a)53(b)43(c)83(d)23(61) The equation2 21 ; 11 1x yrr r represents.(a) a parabola (b) an ellipse (c) a circle (d) None of these(62) If P(m, n) is a point on an ellipsexayb22221? ? with foci S and S' and eccentricty e, then areaof ? SPS' is(a)ae a m2 2?(b) ae b m2 2? (c)be b m2 2?(d)be a m2 2?(63) If P(x1, y1) is a point on an ellipsexayb22221? ? and it's one focus is S(ae, 0) then PS is equalto(a) a + ex1(b) a – ex1(c) ae + x1(d) ae – x1(64) If3bx + ay = 2ab touches the ellipsexayb22221? ? then eccentric angleof point ofcontact =(a)?2(b)?3(c)?4(d)?6
Page 7
- 99(65) If P is a point on an ellipse 5x2+ 4y2= 80 whose foci are S and S'. Then PS + PS' =(a) 45(b) 4 (c) 8 (d) 10(66) Ifxayb22221? ? is an ellipse, then length of it's latus–rectum is(a)22ba(b)22ab(c) depends on whether a > b or b > a (d)22ab(67) The curve represented by x = 3 (cost + sint); y = 4 (cost – sint) is(a) circle (b) parabola (c) ellipse (d) hyperbola(68) The length of the common chord of the ellipse( ) ( )x y????192412 2and the circle(x – 1)2+ (y – 2)2= 1(a)2(b)3(c) 4 (d) None of these(69) S and T are the foci of an ellipse and B is an end of the minor axis. If ? STB is an equilateral,then e =(a)12(b)13(c)14(d)18(70) If the line lx + my + n = 0 cuts an ellipsexayb22221? ? in points whose eccentric angles differby?2, thena l b mn2 2 2 22?=(a) 1 (b)32(c) 2 (d)52(71) Area of the greatest rectangle that can be inscribed in an ellipsexayb22221? ? is(a) ab (b) 2ab (c)ab(d)ab(72) The equation 2x2+ 3y2– 8x – 18y + 35 = k represents(a) parabola if k > 0 (b) circle if k > 0 (c) a point if k = 0 (d) a hyperbola if k > 0
Page 8
- 100(73) Ifxayb? ? 2touches the ellipsexayb22221? ? , then its eccentric angleof the contactpiont is(a) 0o(b) 45o(c) 60o(d) 90o(74) The eccentricity of an ellipse, with its centre at the origin, is12. If one of the directrices isx = 4, then equation of an ellipse is(a) 3x2+ 4y2= 1 (b) 3x2+ 4y2= 12 (c) 4x2+ 3y2= 12 (d) 4x2+ 3y2= 1(75) The radius of the circle passing through the foci of the ellipsex y2 216 91? ?and having itscentre (0, 3) is(a) 4 (b) 3 (c)12(d)72(76) The equations of the common tangents to the parabola y = x2and y = – (x – 2)2is(a) y = 4(x – 1) (b) y = 2 (c) y = –4(x – 1) (d) y = –30x – 50(77) If e1and e2be the eccentricities of a hyperbola and its conjugate, then1 11222e e?=(a) 2 (b) 1 (c) 0 (d) 3(78) A hyperbola, having the transverse axis of length 2 sin? is confocal with the ellipse 3x2+4y2= 12. Then its equation is(a) x2cosec2? – y2sec2? = 1 (b) x2sec2? – y2cosec2? = 1(c) x2sin2? – y2cos2? = 1 (d) x2cos2? – y2sin2? = 1(79) The locus of a point P(? , ? ) moving under the condition that the line y = ? x + ? is a tangentto the hyperbola2 22 21x ya b is(a) a circle (b) a parabola (c) an ellipse (d) a hyperbola(80) If (asec? , btan? ) and (asec? , btan? ) are the ends of a focal chord of2 22 21x ya b then =tan tan2 2 =(a)ee??11(b)11??ee(c)11??ee(d)ee??11
Page 9
- 101(81) If AB is a double ordinates of the hyperbola2 22 21x ya b such that OAB is an equilateral triangle,O being the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies.(a)123? ?e(b)e ?13(c)e ?32(d)e ?23(82) The value of m for which y = mx + 6 is a tangent to the hyperbolax y2 2100 491? ?is(a)1720(b)203(c)2017(d)320(83) The vertices of the hyperbola 9x2– 16y2– 36x + 96y – 252 = 0 are(a) (6, 3), (–6, 3) (b) (–6, 3), (–6, –3) (c) (6, –3), (2, –3) (d) (6, 3),(–2, 3)(84) Which of the following in independent of ? in the hyperbola0212222? ?FHIK? ???? ?x ycos sin?(a) Vertex (b) Eccentricity (c) Abscissa of foci (d) Directrix(85) The equation of the tangent to the curve 4x2– 9y2= 1. Which is parallel to 5x – 4y + 7 = 0is(a) 30x – 24y + 17 = 0 (b) 24x – 30y ?161= 0(c) 3x – 24y ?161= 0 (d) 24x + 30y ?161= 0(86) Two straight lines pass through the fixed points (? a, 0) and have slopes whose products isp > 0. Then, the locus of the points of intersection of the lines is(a) a circle (b) a parabola (c) an ellispe (d) a hyperbola(87) The equations to the common tangents to the two hyperbola2 22 21x ya b and are2 22 21y xa b (a)y x a b? ? ? ?2 2(b)y x b a? ? ? ?2 2(c)y x a b? ? ? ?2 2(d) y = ± x ± (a2– b2)(88) If the line2 6 2x y? ?touches the hyperbola x2– 2y2= 4 then the point of contact is(a) 4 6, ?ch(b)5, 2 6(c)1216,FHIK(d) ? 2 6,ch
Page 10
Download this file to view remaining 39 pages
Related documents:
- Modern India –II Unit 1 Questions with answers - Question Bank
- UPSC 2021 Prelims MODERN HISTORY Answer Key with Explanation - Question Bank
- Aadhunik Hindi Kavya (Chhayavadottar) - Question Bank
- Sociology (Paper II) 2019 Question Paper - Question Paper
- AN OVERVIEW OF CAPITAL AND COMMODITY MARKET. - Notes
- Pharmaceutical Analysis-III - MCQ
- Marketing - Notes
- C programming paper - Question Paper
- (BRM) Tools for Collection of Data - Notes
- Indirect Taxes GST MCQs (TYBCom Sem VI ) - MCQ
- Total Quality Management Solved MCQs - MCQ
- Economics (Paper I) 2017 Question Paper - Question Paper
- Root of equation & Error approximation - Assertion and Reasoning
- Applied Mathematics
- Social Construction Of Gender Unit-5 Quetions with answers - Question Bank
- Principles of Management QPaper NovDec 2017 - Question Paper
- The Rise of Modern China Questions with answers - Question Bank
- Java Programming Solved MCQs - MCQ
- Modern India –II Unit 5 Questions with answers - Question Bank
- Disaster Management 100 MCQs with answers - MCQ