Loading
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 1 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Important Instructions to Examiners:1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.2) The model answer and the answer written by candidate may vary but the examiner may try to assess theunderstanding level of the candidate.3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable forsubject English and Communication Skills.4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figuresdrawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary andthere may be some difference in the candidate’s answers and model answer.6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based oncandidate’s understanding.7) For programming language papers, credit may be given to any other program based on equivalent concept.Q.No.SubQ.N.AnswersMarkingScheme1.a)Ansb)Attempt any FIVE of the following: 2222If tan , show that 212tan22tan1 tan21fxf x x f xfxfxxxxfxfxOR 22212tan1 tantan 22fxfxxxxfx-------------------------------------------------------------------------------------------------------------------State whether the function ( ) is even or odd.2xxeefx1002½1½½1½0222210
Page 1
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 2 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme1.b)Ansc)Ansd)Anse) ()2()2()2( ) ( )function is even.xxxxxxeefxeefxeefxf x f x --------------------------------------------------------------------------------------------------------------------------------------- Find if ...1xxxxxxxxdyy x edxy x edy d dx e e xdx dx dxdyxe edxdyxe edx ---------------------------------------------------------------------------------------------------------------------------- 1111112121212Evaluate tantan tan .1tan 1 1 tan1tan1tan112tan211tan log 12x dxx dx x dxdx dx dx x dxdxx x x dxxxx x dxxxx x dxxx x x c ---------------------------------------------------------------------------------------------------------------------------------------Evaluate 1 sin2 x dx½½½½02202½½½½0222210
Page 2
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 3 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme1.e)Ansf)Ansg)Ans 2221 sin 2sin cos 2sin cossin cossin coscos sinx dxx x x x dxx x dxx x dxx x c ------------------------------------------------------------------------------------------------------------------------- 00Find the area bounded by the curve sin and the -axis from 0 toAreasincoscos cos0112bay x x x xA y dxx dxx -----------------------------------------------------------------------------------------------------------------------------------2221Express in the form , , where , , IR . 121212222222 3 1411351355ia ib a b iiiiiiiii i iiiii -------------------------------------------------------------------------------------------------------------------------------------½½½½02½½½½02½½½½22210
Page 3
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 4 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ. N.AnswersMarkingScheme2.a)Ansb)Ansc)AnsAttempt any THREE of the following: If sin , 1 cos findsin , 1 cossin1 cos1 cos0 sin sinsin1 cossin1 cosdyx a y adxx a y axadxadyadyaaddydy addxdx addydx ------------------------------------------------------------------------------------------------------------------------------------- 2222If find2 2 .1222222dyx y xydxx y xydy dyx y x ydx dxdy dyx y x ydx dxdyy x y xdxdy y xdx y x --------------------------------------------------------------------------------------------------------------------------A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area ismaximum.Let length of rectangle , breadth =Area2 2 3618xyxyAyyxx 1204111104111104122210
Page 4
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 5 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme2.c)d)Ans 22222181818 22Let 018 2 09aArea is maximum at 9Length 9 ; breat 920dth 9A x xA x xdAxdxdAdxdAdxxxxdAdxx -------------------------------------------------------------------------------------------------------------------------------------22A beam is bent in the form of the curve 2sin sin 2 . Find the radius of curvature ofthe beam at this point at22sin sin 22cos 2cos22sin 4sin 2at22cos 2cos22y x xxy x xdyxxdxdyxxdxxdydx 2232232222222sin 4sin 2 222112Radius of curvature2dydxdydxdydx 1½[½½½04½½½½122210
Page 5
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 6 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme2.3.d)a)AnsRadius of curvature 5.595.59 -----------------------------------------------------------------------------------------------------------------Attempt any THREE of the following: 2222Find the equation of the tangent and normal to the curve 4 9 40 at 1,24 9 408 18 081849at 1,24192292slope of tangent ,9Equation of tangent at 1,2 isxyxydyxydxdy xdx ydy xdx ydydxdydxm 22199 18 2 22 9 20 019slope of normal , '2Equation of normal at 1,2 is92 122 4 9 99 2 5 0yxyxxymmyxyxxy ---------------------------------------------------------------------------------------------------------------------------------------11204½½½½½½½½22210
Page 6
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 7 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme3.b)Ansc)Ans sinsinsinsinFind if tanLetlog loglog sin log11sin log .cos1 sincos logsincos logsincos logLet tanlog log tanlogxxxxxxxdyy x xdxuxuxu x xdux x xu dx xdu xxxu dx xdu xu x xdx xdu xx x xdx xvxvx 22222sinlog tan11.sec log tan 1tan1 seclog tantanseclog tantansectan log tantansin seccos log tan log tantanxxxv x xdvx x xv dx xdv x xxv dx xdv x xvxdx xdv x xxxdx xdy x x xx x x x xdx x x ---------------------------------------------------------------------------------------------------------------- 22222 2 2 2Find if loglog111 2 02dyy x x adxy x x adyxdxx x a x a 04½1½½1½04222210
Page 7
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 8 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme3.c)d)Ans2 2 2 2222 2 2 2221111dy xdxx x a x ady x x adxx x a x adydxxa -------------------------------------------------------------------------------------------------------------------------------------- 2222222222222Evaluate4 5cos4 5cos2Put tan ,211cos121145124 1 5 124 4 5 52923132 log2 3 33 tan12log33 tan2dxxdxxx dtt dxttxtdttttdtttdtttdttdtttctxcx ------------------------------------------------------------------------------------------------------------------------------------2041½11½22210
Page 8
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 9 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme4.a)Ansb)AnsAttempt any THREE of the following: 222222221Evaluatesin1sinPut111sincoscotcotxxxxxxxxxxedxexxxedxexxetxxe edx dtxxedx dtxdttec t dttcecx ------------------------------------------------------------------------------------------------------------------------------------- 3333Evaluate sinsin1since sin3 3sin 4sin sin 3sin sin3413sin sin341 cos33cos43x dxx dxx x x x x xx x dxxxc 322sinsin sin1 cos nsix dxORx x dxx x dx12041½11½0422½122210
Page 9
- MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION(Autonomous)(ISO/IEC - 27001 - 2013 Certified)__________________________________________________________________________________________________Page 10 of 17WINTER– 19 EXAMINATIONSubject Name: Applied Mathematics Model Answer Subject Code:Q.No.SubQ.N.AnswersMarkingScheme4.b)c)Ans 2233Put cossinsin113coscos3xtxdx dtxdx dtt dtt dtttcxxc ------------------------------------------------------------------------------------------------------------------------------------- 2222225Evaluate1 2 3251 2 325Consider1 2 3 1 2 32 5 2 3 1 3 1 2Put 17 12712Put 2 13 3133Put 3 23 423425xdxx x xxdxx x xx A B Cx x x x x xx A x x B x x C x xxAAxBBxCCxx 137 23312 41 2 3 1 2 37 13 23log 1 log 2 log 312 3 4dx dxx x x x xx x x c 11½04½½½½222210
Page 10
Download this file to view remaining 7 pages
Related documents:
- Aadhunik Hindi Kavya (Chhayavadottar) - Question Bank
- ANCIENT AND MEDIEVAL HISTORY Answer Key with Explanation - Question Bank
- Geology (Paper I) 2017 Question Paper - Question Paper
- Quantitative Techniques II - Question Bank
- HISTORY I 2018 question paper - Question Paper
- English (Paper I) 2017 Question Paper - Question Paper
- BRM Unit 1 Introduction to Research 4th - Notes
- PESA - Notes
- BRM Unit 4 Statistical Methods - Notes
- Labor Law MCQs with Answers - MCQ
- Contemporary World Solved MCQs - MCQ
- Other college MCQ - MCQ
- Chemistry (Paper I) 2017 Question Paper - Question Paper
- (BRM) Statistical Methods - Notes
- NUMERICAL METHODS AND OPTIMIZTION - MCQ
- Recent Trends in IT Solved MCQs - MCQ
- NIRBHAYA FUND - Notes
- Political Science and International Relations (Paper I) 2020 Question Paper - Question Paper
- Public Administration (Paper II) 2018 Question Paper - Question Paper
- Modern India –II Unit 3 Questions with answers - Question Bank