FULL TEST – I [ANSWERS, HINTS & SOLUTIONS FULL TEST –I]

other 11 Pages
SRM

Contributed by

Sohail Rao Murthy
Loading
  • FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    ANSWERS, HINTS & SOLUTIONS
    FULL TEST –I
    (Main)
    S. No. PHYSICS CHEMISTRY MATHEMATICS
    1.
    A C C
    2.
    B A B
    3.
    D B B
    4.
    B D C
    5.
    C C C
    6.
    C B A
    7.
    A D A
    8.
    C B C
    9.
    B C B
    10.
    C D A
    11.
    B D C
    12.
    D A D
    13.
    C C C
    14.
    B D B
    15.
    B C D
    16.
    D C B
    17.
    C D A
    18.
    D B B
    19.
    D D B
    20.
    D C D
    21.
    D A C
    22.
    B A A
    23.
    A D C
    24.
    A D B
    25.
    A C B
    26.
    A C B
    27.
    D A B
    28.
    B A B
    29.
    D B B
    30.
    B B D
    ALL INDIA TEST SERIES
    FIITJEE
    JEE (Main)-2014
    From Classroom/Integrated School Programs
    7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students from
    Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013

    Page 1

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    2
    P
    P
    h
    h
    y
    y
    s
    s
    i
    i
    c
    c
    s
    s PART – I
    SECTION – A
    1. For full square about an axis passing through ‘O’ =
    2
    M
    by symmetry for remaining portion it must be
    2 2
    3 M M
    4 6 8
    2. apply work-energy theorem
    2 2
    1 mg 1 mg
    mgz K z K Fz 0
    2 K 2 K
    z = 2F/K.
    3. a = 2 + |t – 2|
    for t 2
    a = 2 – t + 2
    a = 4 – t
    dv = (4 – t)dt
    v = 4t – t
    2
    /2
    at t = 2, v = 6 m/s.
    for t > 2
    a = 2 + t – 2 = t
    v t
    6 2
    dv tdv
    v – 6 =
    t
    2
    2
    t /2
    v =
    2
    t
    4
    2
    at t = 4, v = 12 m/s.
    10.
    (a b) [a (a b)]
    . Dot product is zero.
    11. Say speed of boat is v w.r.t. water and speed of river is C. Then, distance travelled in ground
    frame
    = (c + v)
    1
    2
    hour + (v c)
    1
    hour
    2
    = v 1 hour
    = distance travelled by boat w.r.t. river.
    12. In the shown frame the particle appears to be at rest.
    Net force on it must be zero. Therefore pseudo force must be
    equal and opposite to the tension.’
    P
    O
    m
    L
    13. Successive frequencies will differ by an amount v/2L
    14. Linear magnification = v
    2
    /u
    2

    Page 2

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    3
    15. Electric field between the capacitor plates =
    2
    1
    0 0
    2 2
    E =
    0 0 0
    Q x x 1
    Q 2x
    2A 2A 2A
    Potential different E
    d
    =
    0
    d
    Q 2x
    2A
    C
    Q
    +x
    x
    Q 2x
    2C
    x =
    Q
    C
    2
    16. conservation of momentum
    M 2gh m 2gh
    =MV
    1
    + mV
    2
    (1)
    1 2
    V V
    1
    2 2gh
    (2)
    2
    V 3 2gh
    2
    2
    V
    h' 9h
    2g
    17.
    1 2
    1 1 1
    C C C
    =
    0 0
    x a b x
    A A
    C =
    0
    A
    a b
    18. FBD of ‘B’ and ‘C’
    a B
    2g
    T
    a
    C
    3g
    T
    T – 2g = 2a . . . (i)
    and 3g – T = 3a . . . (ii)
    T =
    12g
    5
    for A
    a
    A
    mg
    T=2T
    T = mg
    2
    12g
    5
    = mg m = 4.8 kg.

    Page 3

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    4
    19. W =
    / 2
    0
    mgR
    f.Rd
    2
    = 1 joule.
    20. Coulombic force between them remains same.
    21. Let us assume cylinder is no moving then
    T + f
    s
    = mg sin
    T. R f
    s
    R = 0
    f
    s
    =
    mg 3
    4
    .
    but (f
    s
    )
    max
    = N = mg cos
    = 0.4 . mg
    1 mg
    2 5
    (f
    s
    ) < (f
    s
    )
    max
    , our assumption is wrong. So, friction existing must be kinetic
    f
    k
    = mg cos = 0.4 mg
    1
    2
    =
    mg
    5
    22. Circuit is forming a wheatstone bridge R
    eq
    = 2R
    For maximum power transfer 2R = r.
    R
    R
    R
    R
    R
    4
    R
    r
    23. =
    3
    4
    2
    B
    =
    2
    d 3 dB
    dt 4 dt
    i =
    2
    3
    R 4R
    24. C =
    0 0
    RT 5RT
    M 3M
    dx = C. dt =
    L 0
    0
    0
    T T
    5R
    T x dt
    3M L
    L 0
    2L 3M
    t
    5R
    ( T T )
    A B
    T
    L
    T
    0
    L
    x
    dx
    25.
    E
    2
    = E – ir
    i =
    E
    2r
    . . . (i)
    2E = i(3 + r) . . . (ii)
    r = 1
    26. dQ = dU + dW

    Page 4

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    5
    C = C
    v
    +
    PdV
    ndT
    …(i)
    Differentiating
    2
    TV constant
    dV V
    dT 2T
    …(ii)
    PV = nRT (iii)
    solving eq. (i), (ii) and (iii)
    C =
    R
    2
    27. Equivalent circuit is
    T T
    90 V 20
    2R R
    V = 50
    0
    C
    P
    R
    R
    T
    V
    2R
    T
    R
    T
    (90
    0
    C) (30
    0
    C)
    C
    C
    h
    h
    e
    e
    m
    m
    i
    i
    s
    s
    t
    t
    r
    r
    y
    y PART – II
    SECTION – A
    2. 2B atoms (ions are missing from every unit cell).
    3. Only KI produces
    I
    ions in aq. solution.
    6. Time period
    3
    3
    n
    z
    3 3
    1 1 2
    3 3
    2
    2 1
    T n z
    ;
    T
    n z
    z
    1
    = z
    2
    for same element.
    Hence,
    3
    1
    3
    2
    T
    1 1
    T 27
    3
    7. From K
    eq
    value; % of -D-glucose is 64.3.
    9. Leaving group is at position to anion stabilizing group (i.e.
    C
    O
    group.)
    11.
    O
    OH
    H
    
    OH
    OH
    /Methyl
    Shift
    
    OH
    OH

    Page 5

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    6
    12. All others are used for this purpose and they form cyclic acetal or cyclic thioacetals at
    C O
    group.
    17. Bauxite is (Al
    2
    O
    3
    .2H
    2
    O)
    Magnetite is (Fe
    3
    O
    4
    )
    Bornite is (Cu
    3
    FeS
    3
    )
    Cerussite is (PbCO
    3
    )
    21.
    NH Ac
    X =
    NH
    SO
    3
    H
    Ac
    Y =
    HN
    NO
    2
    SO
    3
    H
    Ac
    Z =
    NH
    2
    NO
    2
    Product P =
    22.
    2
    4
    NiCl
    dsp
    2
    , square planer and diamagnetic
    2
    3
    4
    Cu NH
    dsp
    2
    , square planer and paramagnetic
    4
    Ni CO
    is sp
    3
    , tetrahedral but diamagnetic
    25.
    2 2
    CaF CaF
    (solution) -
    2
    H O
    = 4.05 10
    –3
    S/m
    4 3
    m
    Conc 2.025 10 mol / dm
    3 11 3
    sp
    K 4C 3.32 10 M
    27. Heat supplied at constant pressure in the range of temperature, T is H and change in internal
    energy is U hence
    U 1 1
    0.71 approx
    H 1.4
    28. (A) 2KClO
    3
    + I
    2
    
    2KIO
    3
    + Cl
    2
    (B) 5NaBr + NaBrO
    3
    + 6HCl
    
    6NaCl + 3Br
    2
    + 3H
    2
    O
    (C) CaOCl
    2
    + 2NaI + 2HCl
    
    I
    2
    + CaCl
    2
    + H
    2
    O + NaCl
    (D) NaCl + H
    2
    SO
    4
    
    NaHSO
    4
    + HCl
    29. A and C possesses plane of symmetry. While D possesses centre of symmetry.

    Page 6

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    7
    M
    M
    a
    a
    t
    t
    h
    h
    e
    e
    m
    m
    a
    a
    t
    t
    i
    i
    c
    c
    s
    s PART – III
    SECTION – A
    1.
    n n
    3 2
    C C
    n = 5
    2.
    PA PB
    PA PB
    2
    |PA| + |PB| > 2|PT| =
    2 3
    Maximum length occurs when PAB passes through centre
    i.e. |PA| + |PB| = 4 (Maximum)
    So, range is
    2 3, 4
    3. Length of tangent is =
    2
    1
    z i 4
    =
    2
    3 2i 4 9 4 4 3
    4. Required number of sentences =
    6 6 6
    0 1 2
    7!
    C C C
    2!
    5. The given line can be written as y = x
    Hence reflection is 3 + 2i
    6.
    n 1 n n n n
    1 1 1 1
    a a a 1 a a 1
    1 2 100 101
    1 1 1 1
    S .....
    a a a a
    =
    1 101 101
    1 1 1
    2
    a a a
    Since, a
    101
    > 1 [S] = 1
    7. Height of the cone =
    5
    3
    Radius of cone =
    2
    2
    5 8
    9 11
    3 3
    Volume =
    2
    8 5
    11
    3 3
    =
    3520
    27
    8. 4! = 24
    5! = 24 × 5
    6! = 24 × 5 × 6
    1! + 2! + 3! = 9
    So, 1! + 2! + 3! + ….. 100! = 9 + 24p
    = 9
    9. |z| = O × O – I × I = –I
    2
    det(|z|) = |–I
    2
    | = (–1)

    Page 7

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    8
    10.
    1 2 2
    f x f
    1 x x 1 x
    ….. (1)
    Now replace x by
    1
    1 x
    we get
    1 1 1 2
    f f 1 2 1 x 2 1 2x
    1 x x x x
    .. (2)
    Replace x by
    1
    1
    x
    we get
    1 2x
    f 1 f x 2x
    x x 1
    ….. (3)
    From equation (1) – (2), we get
    Now,
    1 2
    f x f 1 2x
    x 1 x
    ….. (4)
    From equation (3) + (4), we get
    Again,
    2x 2
    2f x
    x 1 1 x
    x 1
    f x
    x 1
    which is a one–one function
    11. x = –a is the only asymptote to the given curve
    a
    2
    a
    A 2 ydx 3 a
    N
    (
    a, 0)B
    M
    (a, 0)
    12. M = e
    y
    , N = x · e
    y
    + 2y
    Now,
    dM
    dy
    (keeping x constant) = e
    y
    =
    dN
    dx
    (keeping y constant)
    Hence, the given equation is exact
    Now,
    y y
    f e dx g y x e g y
    Differentiating w.r.t y we get,
    y y
    dg
    x e N x e 2y
    dy
    i.e.
    dg
    2y
    dy
    Integrating g(y) = y
    2
    + c
    1
    f = x·e
    y
    + y
    2
    + c
    1
    So, desired solution is x·e
    y
    + y
    2
    = 0
    13.
    b v b b c
    4v b v b b c
    v b c
    v b sin c
    2 v sin 3
    3
    sin
    2

    Page 8

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    9
    1
    cos
    2
    1
    4v 2 1 b b c
    2
    1
    v b b c
    4
    14. Area under curve and axis =
    1
    2
    0
    2
    1 x dx
    3
    at point (, 1 –
    2
    ) tangent is
    [y – (1 –
    2
    )] = –2(x)
    2x + y =
    2
    + 1
    2
    1
    P , 0
    2
    , Q (0,
    2
    + 1)
    Hence,
    2
    1 1
    Q 2, 1 4x x
    2 2 2
    1 1 1 1 1 1
    A 1 2x x 1 4x x 1 3x x
    1
    1
    dA
    3 2x
    dx
    1
    3
    x
    2
    15.
    , 0
    4
    lies on directrix and centre be (x
    1
    , 0). Equation of one of the tangent is
    x y 0
    4
    and chord is
    x 0
    4
    , centre is (x
    1
    , 0)
    1 1
    x x
    4 4
    1
    2
    2
    2
    1
    x
    x
    16 2
    =
    2
    2
    1
    2x x
    8
    2
    2
    1
    3 x
    x 0
    2 16
    1 2
    3
    x x
    2
    Midpoint
    3
    , 0
    4
    16. 2x + y 1 is the axis and (1, –1) is the point of intersection with the tangent at the vertex, length
    of latus rectum is
    5
    So, coordinates can be (h, k)
    5 1 1 3 5
    h 1 1 ,
    4 4 4 4
    5
    5 2 1 1 3
    k 1 1 ,
    4 2 2 2
    5
    3 1
    ,
    4 2
    and
    5 3
    ,
    4 2
    are required points
    17. For the common tangent m
    2
    sin
    2
    + cos
    2
    = m
    2
    + 1
    m
    2
    (sin
    2
    – 1) = 1 – cos
    2
    2
    2
    1 cos
    m
    sin 1
    =
    2
    2
    2
    cos
    cot
    sin
    Clearly no such m is possible (when
    4 2
    )

    Page 9

  • AITS-FT-I-PCM(Sol)-JEE(Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    10
    18. Let midpoint is (h, k) then chord is
    h
    y x 2h
    k
    and if it is a tangent then
    2
    h
    x 4 x 2h
    k
    D = 0
    2
    h
    k
    2
    (Parabola)
    19.
    2 2 2 2
    1 1 2 2 1 1 1 2
    1 1 2 2
    1
    20.
    2
    n n 1
    x / 2
    0
    x
    g n e d x
    2
    =
    1
    2 x / 2
    0
    x
    n n 1 e dx
    2
    =
    1
    2 x / 2
    0
    x
    n n 1 e dx
    2
    = n
    2
    + n + 1[4 – 2e
    1/2
    ]
    So, minimum value is
    12 6 e
    21. f(0) < f(1) now if suppose
    f(n – 1) < f(n)
    f n 1 6 f n 6
    f(n) < f(n + 1)
    Also, f(0) < 3, let f(n) < 3
    f n 6 3 6
    f(n + 1) < 3
    So, f(n) is bounded above 3
    22. Any plane containing the line is
    1 2
    p p 0
    . It’s distance (d) from origin
    2
    1
    a a'
    .
    Let
    2
    2
    2
    2 1
    d
    A B C
    where
    2
    A a' , B 2 aa'
    and
    2
    C a
    .
    2
    A 1 B 2 C 1 0
    . As
    R
    ,
    D 0
    2
    4 A C B
    p
    0
    q
    4AC B
    . So,
    max
    p
    d
    q
    .
    23. We have f(x + a)
    1
    2
    and so f(x)
    1
    2
    x R.
    Lets set, g(x) = f(x) –
    1
    2
    we have g(x) 0 x R
    2
    1
    g x a g x
    4
    2 2
    1
    g x a g x
    4
    =
    2
    1
    g x 2a g x a
    4

    Page 10

Download this file to view remaining 1 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.