FULL TEST – I [ANSWERS, HINTS & SOLUTIONS FULL TEST –I]
other
11 Pages
SRM
Contributed by
Sohail Rao Murthy
Loading
- FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.comANSWERS, HINTS & SOLUTIONSFULL TEST –I(Main)S. No. PHYSICS CHEMISTRY MATHEMATICS1.A C C2.B A B3.D B B4.B D C5.C C C6.C B A7.A D A8.C B C9.B C B10.C D A11.B D C12.D A D13.C C C14.B D B15.B C D16.D C B17.C D A18.D B B19.D D B20.D C D21.D A C22.B A A23.A D C24.A D B25.A C B26.A C B27.D A B28.B A B29.D B B30.B B DALL INDIA TEST SERIESFIITJEEJEE (Main)-2014From Classroom/Integrated School Programs7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students fromClassroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
Page 1
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com2PPhhyyssiiccss PART – ISECTION – A1. For full square about an axis passing through ‘O’ =2M6by symmetry for remaining portion it must be2 23 M M4 6 8 2. apply work-energy theorem2 21 mg 1 mgmgz K z K Fz 02 K 2 K z = 2F/K.3. a = 2 + |t – 2|for t 2a = 2 – t + 2a = 4 – tdv = (4 – t)dtv = 4t – t2/2at t = 2, v = 6 m/s.for t > 2a = 2 + t – 2 = tv t6 2dv tdv v – 6 =t22t /2 v =2t42at t = 4, v = 12 m/s.10.(a b) [a (a b)] . Dot product is zero.11. Say speed of boat is v w.r.t. water and speed of river is C. Then, distance travelled in groundframe= (c + v) 12hour + (v c) 1hour2= v 1 hour= distance travelled by boat w.r.t. river.12. In the shown frame the particle appears to be at rest. Net force on it must be zero. Therefore pseudo force must beequal and opposite to the tension.’POmL13. Successive frequencies will differ by an amount v/2L14. Linear magnification = v2/u2
Page 2
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com315. Electric field between the capacitor plates =210 02 2 E = 0 0 0Q x x 1Q 2x2A 2A 2A Potential different Ed= 0dQ 2x2A CQ+xxQ 2x2C x =QC2 16. conservation of momentumM 2gh m 2gh =MV1+ mV2(1)1 2V V12 2gh (2)2V 3 2gh22Vh' 9h2g 17.1 21 1 1C C C =0 0x a b xA A C =0Aa b18. FBD of ‘B’ and ‘C’a B2gTaC3gT T – 2g = 2a . . . (i)and 3g – T = 3a . . . (ii)T =12g5for AaAmgT=2T T = mg2 12g5= mg m = 4.8 kg.
Page 3
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com419. W =/ 20mgRf.Rd2 = 1 joule.20. Coulombic force between them remains same.21. Let us assume cylinder is no moving thenT + fs= mg sin T. R fsR = 0 fs=mg 34.but (fs)max= N = mg cos = 0.4 . mg 1 mg2 5 (fs) < (fs)max, our assumption is wrong. So, friction existing must be kineticfk= mg cos = 0.4 mg 12=mg522. Circuit is forming a wheatstone bridge Req= 2RFor maximum power transfer 2R = r.RRRRR4Rr23. =342B =2d 3 dBdt 4 dt i =23R 4R24. C =0 0RT 5RTM 3Mdx = C. dt =L 000T T5RT x dt3M L L 02L 3Mt5R( T T )A BTLT0Lxdx25.E2= E – ir i =E2r. . . (i)2E = i(3 + r) . . . (ii) r = 1 26. dQ = dU + dW
Page 4
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com5C = Cv+PdVndT…(i)Differentiating2TV constantdV VdT 2T …(ii)PV = nRT …(iii)solving eq. (i), (ii) and (iii)C =R227. Equivalent circuit isT T90 V 202R R V = 500CPRRTV2RTRT(900C) (300C)CChheemmiissttrryy PART – IISECTION – A2. 2B atoms (ions are missing from every unit cell).3. Only KI producesIions in aq. solution.6. Time period33nz3 31 1 23 322 1T n z;Tn zz1= z2for same element.Hence,3132T1 1T 273 7. From Keqvalue; % of -D-glucose is 64.3.9. Leaving group is at position to anion stabilizing group (i.e.COgroup.)11.OOHHOHOH/MethylShiftOHOH
Page 5
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com612. All others are used for this purpose and they form cyclic acetal or cyclic thioacetals atC Ogroup.17. Bauxite is (Al2O3.2H2O)Magnetite is (Fe3O4)Bornite is (Cu3FeS3)Cerussite is (PbCO3)21.NH AcX =NHSO3HAcY =HNNO2SO3HAcZ =NH2NO2Product P =22. 24NiCl dsp2, square planer and diamagnetic 234Cu NH dsp2, square planer and paramagnetic 4Ni CO is sp3, tetrahedral but diamagnetic25.2 2CaF CaF (solution) -2H O= 4.05 10–3S/m4 3mConc 2.025 10 mol / dm 3 11 3spK 4C 3.32 10 M 27. Heat supplied at constant pressure in the range of temperature, T is H and change in internalenergy is U hence U 1 10.71 approxH 1.4 28. (A) 2KClO3+ I22KIO3+ Cl2(B) 5NaBr + NaBrO3+ 6HCl6NaCl + 3Br2+ 3H2O(C) CaOCl2+ 2NaI + 2HClI2+ CaCl2+ H2O + NaCl(D) NaCl + H2SO4NaHSO4+ HCl29. A and C possesses plane of symmetry. While D possesses centre of symmetry.
Page 6
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com7MMaatthheemmaattiiccss PART – IIISECTION – A1.n n3 2C C n = 52. 1/ 2PA PBPA PB2 |PA| + |PB| > 2|PT| =2 3Maximum length occurs when PAB passes through centrei.e. |PA| + |PB| = 4 (Maximum)So, range is2 3, 43. Length of tangent is =21z i 4 =23 2i 4 9 4 4 3 4. Required number of sentences = 6 6 60 1 27!C C C2! 5. The given line can be written as y = xHence reflection is 3 + 2i6. n 1 n n n n1 1 1 1a a a 1 a a 1 1 2 100 1011 1 1 1S .....a a a a =1 101 1011 1 12a a a Since, a101> 1 [S] = 17. Height of the cone =53Radius of cone =225 89 113 3 Volume =28 5113 3 =3520278. 4! = 245! = 24 × 56! = 24 × 5 × 61! + 2! + 3! = 9So, 1! + 2! + 3! + ….. 100! = 9 + 24p = 99. |z| = O × O – I × I = –I2det(|z|) = |–I2| = (–1)
Page 7
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com810. 1 2 2f x f1 x x 1 x ….. (1)Now replace x by11 xwe get 1 1 1 2f f 1 2 1 x 2 1 2x1 x x x x ….. (2)Replace x by11xwe get 1 2xf 1 f x 2xx x 1 ….. (3)From equation (1) – (2), we getNow, 1 2f x f 1 2xx 1 x ….. (4)From equation (3) + (4), we getAgain, 2x 22f xx 1 1 x x 1f xx 1which is a one–one function11. x = –a is the only asymptote to the given curvea2aA 2 ydx 3 a N(–a, 0)BM(a, 0)12. M = ey, N = x · ey+ 2yNow,dMdy(keeping x constant) = ey=dNdx(keeping y constant)Hence, the given equation is exactNow, y yf e dx g y x e g y Differentiating w.r.t y we get,y ydgx e N x e 2ydy i.e.dg2ydyIntegrating g(y) = y2+ c1 f = x·ey+ y2+ c1So, desired solution is x·ey+ y2= 013.b v b b c 4v b v b b c v b c v b sin c 2 v sin 3 3sin2
Page 8
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com91cos2 14v 2 1 b b c2 1v b b c4 14. Area under curve and axis = 12021 x dx3 at point (, 1 – 2) tangent is[y – (1 – 2)] = –2(x – ) 2x + y = 2+ 1 21P , 02 , Q (0, 2+ 1)Hence,21 1Q 2, 1 4x x 2 2 21 1 1 1 1 1A 1 2x x 1 4x x 1 3x x 11dA3 2xdx 13x2 15., 04 lies on directrix and centre be (x1, 0). Equation of one of the tangent isx y 04 and chord isx 04 , centre is (x1, 0)1 1x x4 412 221xx16 2 =2212x x8 2213 xx 02 16 1 23x x2 Midpoint 3, 04 16. 2x + y – 1 is the axis and (1, –1) is the point of intersection with the tangent at the vertex, lengthof latus rectum is5So, coordinates can be (h, k)5 1 1 3 5h 1 1 ,4 4 4 45 5 2 1 1 3k 1 1 ,4 2 2 25 3 1,4 2 and5 3,4 2 are required points17. For the common tangent m2sin2 + cos2 = m2+ 1m2(sin2 – 1) = 1 – cos22221 cosmsin 1 =222coscotsin Clearly no such m is possible (when4 2 )
Page 9
- AITS-FT-I-PCM(Sol)-JEE(Main)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com1018. Let midpoint is (h, k) then chord ishy x 2hk and if it is a tangent then2hx 4 x 2hk D = 02hk2 (Parabola)19.2 2 2 21 1 2 2 1 1 1 2 1 1 2 21 20. 2n n 1x / 20xg n e d x2 = 12 x / 20xn n 1 e dx2 = 12 x / 20xn n 1 e dx2 = n2+ n + 1[4 – 2e1/2]So, minimum value is12 6 e21. f(0) < f(1) now if suppose f(n – 1) < f(n) f n 1 6 f n 6 f(n) < f(n + 1)Also, f(0) < 3, let f(n) < 3 f n 6 3 6 f(n + 1) < 3So, f(n) is bounded above 322. Any plane containing the line is1 2p p 0 . It’s distance (d) from origin 21a a' .Let2222 1dA B C where2A a' , B 2 aa' and2C a.2A 1 B 2 C 1 0 . AsR ,D 024 A C Bp0q4AC B . So,maxpdq .23. We have f(x + a) 12and so f(x) 12 x R.Lets set, g(x) = f(x) –12we have g(x) 0 x R 21g x a g x4 2 21g x a g x4 = 21g x 2a g x a4
Page 10
Download this file to view remaining 1 pages
Related documents:
- HISTORY II 2017 & question paper - Question Paper
- TRADING IN STOCK MARKET - STOCK AND COMMODITY MARKET - Notes
- EXIM TRADE - INTERNATIONAL BUSINESS - Notes
- Frequently Asked Questions on Recruitment Rules - Notes
- banking - Assignment
- Public Administration (Paper II) 2020 Question Paper - Question Paper
- INTERNATIONAL FINANCIAL REPORTING STANDARDS - INTERNATIONAL FINANCIAL REPORTING STANDARDS - Notes
- Chemistry Paper I QP - Question Paper
- Mizo Language And Grammar - MCQ
- Geology (Paper II) 2017 Question Paper - Question Paper
- AN OVERVIEW OF CAPITAL AND COMMODITY - STOCK AND COMMODITY MARKET - Notes
- FULL TEST – I Paper-2 [ANSWERS, HINTS & SOLUTIONS]
- Pharmacology and dental materia medica - MCQ
- Object Oriented Programming In C++ MCQs - MCQ
- Human Resource management and Orginasationl behavior MCQs with Answers - MCQ
- Consumer Behavior MCQs - MCQ
- Current Affairs SEPTEMBER 2020 - Notes
- GE6075 Professional Ethics in Engineering - Notes
- RURAL AND TRIBAL DEVELOPMENT ADMINISTRATION MCQs with ansers - MCQ
- The Essence of Sociology MCQs - MCQ